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Abstract. In this study we provide a descriptive framework of an Eigenplace function that maps 

from the relational space between objects to the numerical coordinate space that is a part of 

external reality. Our approach assumes that the Eigenplace function maps cognitively valid space 

(the relational structure linked with temporal intervals) to a mathematical set of coordinates. After 

a description of a detailed spatial ontology, some generalizations are discussed. 
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1. Introduction 
 
What is the location of an object in space? Without examining the definition of object at 

this point, this is the question underlying the Eigenplace function in its simplest form. 

Important in this assumption is that, on the one hand, there are relations between objects 

that we mentally represent (normally by linking them to intervals in time or events), but, 

on the other hand, these objects are linked with concrete parts or regions of reality that 

are represented by sets of coordinates.  

The Eigenplace function has been applied and examined in different fields ranging 

from geometry, mathematical models of spatial relations, and Qualitative Spatial 

Reasoning (Galton, 2000, Galton and Hood, 2005, Hood and Galton, 2006), to human 

geography (Golledge, 1992) and formal semantics of natural language (e.g., Kracht, 

2002, Mador-Haim and Winter, 2015, Piñón, 1993, Pustejovsky, 2013, Wunderlich, 

1991, Zwarts and Winter, 2000). However, there are no systematic frameworks 

converging different perspectives on this function. In the current study we aim at 

providing a descriptive and cognitively valid and inclusive framework, bringing together 

most of the current perspectives but also containing an ontology that can be implemented 

in an axiomatic way (in our case, by using a region-calculus), and corresponding to 

experimental evidence from research on spatial cognition.  
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In this paper, we first introduce the idea of the Eigenplace function and describe the 

constituents of a basic spatial ontology (e.g., regions, paths, and objects) and their main 

properties. Next, we describe the spatial relations between objects or regions according 

to the Region Connection Calculus (RCC) formalism extended with some additional 

operators. Further, the Eigenplace function is defined, and we describe how objects 

occupying regions in space and time and their relations can be mapped by using this 

function. This is followed by a description of uses of the Eigenplace function in 

modeling prepositions and Figure-Ground object roles, expressing them also in relation 

to the sequential order of time intervals and regions. The final sections of the paper 

provide remarks about time in Eigenplace functions, the modeling of vagueness and 

uncertainty in spatial reasoning, and the representation of motion and change of location. 

We conclude with general observations and a final discussion on the Eigenplace 

function. 

2. Theoretical framework 
 
A spatial configuration can be represented either relationally (which is the way space is 

cognitively represented) or absolutely (which is the way space is represented 

mathematically, and corresponds, e.g., to the Cartesian coordinate conception of absolute 

space). The idea behind the Eigenplace function is that each object in its relational sense 

is mapped to a concrete position in an absolute space.   

An Eigenplace function as such does not explain where an object is, and does not 

even tell what the adjacent areas and objects are. Rather it presupposes the conception of 

an absolute space and maps relational information (crucial for spatial cognition) to the 

absolute (Cartesian or otherwise) space. Although every object has a unique location in 

absolute space, it is cognitively represented in relation to another object (reference 

object). 

Canonically and informally the Eigenplace function can be defined as follows: 

every object stands in relation with other objects in a particular time interval and 

occupies a region in space (Wunderlich and Herweg, 1991, 758). This definition can be 

extended either by specifying the relations or adding other operators. 

In our approach we assume (1) a particular ontology classifying types of 

constituents and (2) particular sets of relations. Both the ontology and relations – which 

are further explained below – can be flexibly extended. 

 

2.1. Basic constituents  
(cp. Mani and Pustejovsky, 2012, Talmy, 2000, Cohn et al., 1997) 

 
A Basic Spatial Ontology consists of regions, paths, objects, orientation, distance and a 

few additional perceptual determinants (reference frame, manner and cause of 

movement). Below we describe these concepts and their main characteristics and 

principles in more detail. The constituents of the Basic Spatial Ontology are: 

 

a) regions (places); 

 

b) paths; all segments of paths are also paths; all segments of paths are subsets or 
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elements of paths but not all paths are segments; also lines are considered as 

paths; 
 

The basic principles that define paths and places and their mutual structure are as 

follows: 

 

1. Paths are cognitively represented either as motions ('Mike walks') or as 

encoding a distinguished part (source, middle part or goal; e.g., 'Jim came 

from home', 'Black dog ran through the park', 'John went to a movie'). If a 

path contains a distinguished part, it is perceived asymmetrically. 

2. Spatial networks are generated out of sets of paths (including their 

intersections) and regions adjacent to them. 

 

c)   objects 
a. Figures (F; objects to be located); 
b. Grounds (G; objects in virtue of which F are located); 
c. Viewers (not always involved, and if involved not necessarily a part of 

the scene; however, location of a viewer (or an observer-induced axis) can 

determine the perception of Figure and Ground). For more on viewers see 

after the listing of the components of the ontology (see page 15). 
 

There are several principles that characterize object properties and relations as 

perceived in places and paths: 

 
1. Figures and Grounds are asymmetric in terms of (1) perceptual and functional 

prominence and dependencies, (2) their geometrical shape (Ground objects 

tend to be larger, more stationary; Figure objects – smaller, mobile), and (3) 

constraints of linguistic encodings (cp. Landau, 1996, Talmy, 2000, Carlson 

and Covell, 2005). 
2. Borders, boundaries, and surfaces are considered as belonging to either regions 

or objects. 
3. Physical objects are spatio-temporally persistent and their paths are connected: 

every physical object has a unique location and a continuous path in space and 

time without abrupt jumps, appearances and disappearances in different space 

or time segments (cp. Gardenfors, 2014, 128f.). 
4. Objects are perceptually prior and primary with respect to regions; regions are 

perceived and discriminated as units of attention in virtue of their objecthood 

(Figure 1) (Scholl, 2001). 
5. Objects are primary with respect to their locations, but the uniqueness of an 

object is possible in virtue of its location (cp. also Scholl, 2001, 14). 

 

 
Figure 1. Units of attention (after Scholl, 2001, 14) 
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6. Events are also considered as objects (serving the role of either Figure or Ground), 

and only where it is necessary to distinguish between only spatial vs. only temporal 

readings, objects (in the narrower sense as a part of the spatial domain) can be 

contrasted with events (as a part of the temporal domain). In both cases, the relation 

between Figure and Ground holds. In general, the following regularities (Table 1) 

can be applied (cp. Wunderlich and Herweg, 1991, 760): 

 
Table 1. Localizations and types of Figure (F) relative to a Ground  

(G) for spatial and temporal objects 
 

Localization of F relative to a G 

Type of object F G 

spatial spatial object (or event) spatial object 

temporal event (or spatial object) event 

 
This, however, means that the Eigenplace function would be different for places and 

events. Instead of an Eigenplace function 
 

𝐸𝑖𝑔: 𝑂 × 𝑇 → 𝑅 
 

where O is a set of spatial objects, T – set of time intervals and R – set of spatial 

regions (places and paths), we would have another version for events 
 

𝐸𝑖𝑔𝑒: ℇ × 𝑇 → 𝑅 
 

where ℇ is a set of events, T – set of time intervals and 𝑅 a set of spatial regions (cp. 

Piñón, 1993). A crucial difference between Eigenplace with objects and Eingenplace 

with events is that we can never model the precise topology of events because each 

event has its own topology (if any at all) and eventually several topologies, whereas 

we can model precise topology of an Eigenplace with spatial objects. (For an 

alternative view concerning the application of topological relations to cognitive non-

spatial relations cp. Lewin, 1936.)1 
However, even when thinking of spatial objects, it is worth keeping in mind that 

spatial objects are transformed once they evolve in time (Jiang and Worboys, 2009). 
7. In general there are different kinds of objects (cp. Gärdenfors, 2014, 129, Lyons, 

1977, 442-445, Van Lambalgen and Hamm, 2005): 
(1) physical and spatial objects: they have a necessarily temporal embeddedness, 

and their locations are unique and their paths are continuous and connected 

trajectories; one and the same spatial object cannot be in two different places 

at the same time, 
(2) temporal objects (e.g., events): they have spatial constituents and they can 

also have sub-events; events can occur in several places at the same time (e.g., 

elections), 

                                                
1 Another tradition in considering events as objects is Davidsonian semantics (Pustejovsky, 2013, Davidson, 

1969, for a different version cp. also Kim, 1973), assuming that the argument structure of a predicate 

contains a first-order individual e, i.e., P(x1,,xn,e). Location of an event is a relation between the event 
variable e, and a location argument l, i.e., loc(e,l). 
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(3) abstract objects (e.g., propositions, sets): they do not have direct spatial or 

temporal properties. 

 
d)  orientation or direction (determining the relation between Figure and 

Ground): left, right, under, above.  

 
e)  distance: near/close, far; here we assume a relational conception of distance 

consisting of two main operators. 

 
f)  additional determining factors (neither inherently geometric nor 

topological): 

a. Frames of reference: not a part of a geometrically-topological framework 

but determining (d) above (the relation between Figure and Gound); 
b. Manner of movement; 
c. Cause of movement. 

 

In a more general view, physical objects, events, shapes, and indeterminate regions 

are considered as first-order objects. Further, first-order objects can be classified 

according to different types – physical, temporal etc. 
From a technical point of view, the present framework is largely consistent with 

Cohn et al., 1997, Randell et al., 1992, Kontchakov et al., 2010, Galton, 2014, in the way 

that their sorts in the first-order sorted logic correspond to the basic primitives in the 

sense of the present paper, i.e., ‘regions’ correspond to the sort REGION, ‘objects’ 

(Figures and Grounds) correspond to the sort PhysObj. Sort NULL referring to spatially 

non-existent objects is not represented in the current approach. The further 

axiomatization is based on the Region Connection Calculus 8 (RCC-8) (Randell et al., 

1992) but enriched with several derived and non-derived relations. 

 

2.2. Basic topological and geometric non-functional relations 

 
Spatial objects (regions, paths, objects) are mutually situated in spatial relations that can 

be characterized topologically or geometrically. Below we describe the basic non-

functional topological and geometric relations and their properties. Non-functional 

relations mean that the differences based on spatial prominence (distinction between 

Figure and Ground), frequent interaction, experience and general knowledge are not 

included in this ontology. The basic topological and geometric non-functional relations 

are: 

1. Connectedness (C) between regions or objects which is the core relation underlying 

other spatial relations (cp. Cohn et al., 1997, Cohn et al., 1995; for topological 

interpretations: Galton, 2000, 82f.).2 
C(x,y): x connects to y 

                                                
2 For the predecessor of this conception cp. Randell et al., 1992, Clarke, 1981, Clarke, 1985; for a discussion of 

the connection relation in context of temporal relations see: Galton 2009. A prominent axiomatic framework 

assuming connection as a foundational relation is that of B.L. Clarke (1981, 205) arguing that individual 

variables are spatio-temporal regions bound by two-place predicate ‘connected with’. Informal idea about 
the foundational role of connectedness is also expressed by De Laguna (1922). 
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Connectedness is 

(1) Reflexive: ∀𝑥[𝐶(𝑥, 𝑥)]; 
(2) Symmetric: ∀𝑥∀𝑦[𝐶(𝑥, 𝑦) → 𝐶(𝑦, 𝑥)]. 
 

Distance between objects bound by C(x,y) is zero. 
If using a classical topological representation, we can define regions x and y as 

connected if their closures have at least one shared point: 

𝐶(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑐𝑙(𝑥) ∩ 𝑐𝑙(𝑦) ≠ ∅ 

 

In case of sets in ℝ𝑛 (sets in an n-dimensional vector space over real numbers) a set 

S is connected if between any two points of S there is a continuous path within S (Galton, 

2000, 147).3 In a wider sense, the primitive concept in our approach is a connection 

structure (ℛ, 𝐶) where ℛ is an arbitrary non-empty set of regions and 𝐶 a symmetric 

binary relation on ℛ. The idea of connection structure is based on Whitehead’s approach 

and further developed, made more precise by B.L. Clarke (Gerla, 1995) and enables to 

define inclusion ‘≤’ such that 

𝑥 ≤ 𝑦 ⇔ 𝐶(𝑥) ⊆ 𝐶(𝑦) 

 

Further, overlapping ‘𝚶’ is such that 

𝑥𝚶𝑦 ⇔ ∃ 𝑧 such that 𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦 
 

Nontangential inclusion ‘≪’ would mean 

𝑥 ≪ 𝑦 ⇔ 𝐶(𝑥) ⊆ 𝚶(𝑦) 

 

such that for every 𝑧 ∈ 𝑅, 𝚶(𝑧) is 𝐶(𝑧).  

Apart from symmetry of connection relation (A1), the following axioms apply: 

there is no maximum for ⊆ (A2); for every x and y there is a z that is connected to x and 

y (A3); connection is reflexive (A4); 𝐶(𝑥) = 𝐶(𝑦)  ⟹  𝑥 = 𝑦 (A5); any region z 

contains regions x and y that are not connected (A6) (Gerla, 1995, 1020, 1022). 
According to RCC-8 (Figure 2) (Randell et al., 1992, Mani and Pustejovsky, 2012, 

31) and enriched by some further relations (Cohn et al., 1997)4 the following basic 

relations derived from C can be distinguished: 
 

2. Disconectedness (DC): Regions or objects A and B do not touch each other; A is 

disconnected from B; DC(A,B) or formally defined substituting A and B by the 

variables x and y 

𝐷𝐶(𝑥, 𝑦) ≡𝑑𝑒𝑓 ¬𝐶(𝑥, 𝑦) 

                                                
3 Strictly speaking when two regions are connected within RCC: (a) they share (at least) a common point, or 

(b) their closures share a common point, or (c) distance between both regions is zero (Dong, 2008, 321, 

Cohn and Varzi, 2003). A point in RCC can be regarded either as a region or a special case or sort of a 

region; in the latter case it would be a categorically different object than the region. A more detailed 
discussion is an issue of another study (but cp. Dong, 2008) but a simple version of the mentioned 

definitions could be paraphrased by replacing point with region. 
4 For a context cp. also Bennett and Düntsch, 2007, Galton, 2004, Cohn and Renz, 2008, for an extension with 

Boolean operators cp. Wolter and Zakharyaschev, 2000, Stell, 2000; for a version containing distance and 

size relations cp. Dong, 2008. Topological and size information is integrated also in the approach by 

Gerevini and Renz, 2002. Another extension with direction relations is provided by Dube, 2017, Cohn, Li, 
Liu and Renz, 2014. For a relation-algebraic approach to RCC cp. Düntsch, Wang and McCloskey, 2001. 
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A topological interpretation of 𝐷𝐶(𝑥, 𝑦) is 𝑐𝑙(𝑥) ∩ 𝑐𝑙(𝑦) = ∅ where 𝑐𝑙(𝑥) and 

𝑐𝑙(𝑦) are closed sets. 
 

3. Part (P): A region or object A is a part of a region or object B; P(A,B) or formally 

defined 

𝑃(𝑥, 𝑦) ≡𝑑𝑒𝑓 ∀𝑧[𝐶(𝑧, 𝑥) → 𝐶(𝑧, 𝑦)] 

 

Parthood is 

(1) Reflexive: 𝑃(𝑥, 𝑥), 

(2) Transitive: 𝑃(𝑥, 𝑦) ∧ 𝑃(𝑦, 𝑧) → 𝑃(𝑥, 𝑧). 5 
 

A topological interpretation of 𝑃(𝑥, 𝑦) is 𝑥 ⊆ 𝑦. 
An inverse version of P is also possible  

𝑃𝑖(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑃(𝑦, 𝑥) 

 

4. Proper part (PP): A region or object A is a proper part of a region or object B 

whereby B unambiguously includes A as its part; PP(A,B) or formally defined 

𝑃𝑃(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑃(𝑥, 𝑦) ∧ ¬𝑃(𝑦, 𝑥) 

 

A topological interpretation of 𝑃𝑃(𝑥, 𝑦) is 𝑥 ⊂ 𝑦. 
An inverse version of PP is also possible 

𝑃𝑃𝑖(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑃𝑃(𝑦, 𝑥) 

 

5. Overlap (O): A region or object A entirely overlaps with a region of object B: O(A,B) 

or formally defined 

𝑂(𝑥, 𝑦) ≡𝑑𝑒𝑓 ∃𝑧[𝑃(𝑧, 𝑥) ∧ 𝑃(𝑧, 𝑦)] 

 

A topological interpretation of 𝑂(𝑥, 𝑦) is 𝑥 ∩ 𝑦 ≠ ∅. 
 

6. External connectedness (EC): Regions or objects A and B touch each other at 

boundaries, i.e., are externally connected; EC(A,B) or formally defined 

𝐸𝐶(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝐶(𝑥, 𝑦) ∧ ¬𝑂(𝑥, 𝑦) 

 

Two regions or objects that touch each other are also called adjacent (Tomko and 

Winter, 2013, 181). 

A topological interpretation of 𝐸𝐶(𝑥, 𝑦) is 𝜕𝑥 ∩ 𝜕𝑦 ≠ ∅ ∧ 𝑥 ∩ 𝑦 ≠ ∅, where 𝜕𝑥 

and 𝜕𝑦 are borders of regions x and y respectively. 

Alternatively if we indicate bounded regions, i.e., their interiors (𝑥𝑜, 𝑦𝑜), we can 

define EC as 𝑥 ∩ 𝑦 ≠ ∅ ∧ 𝑥𝑜 ∩ 𝑦𝑜 = ∅ (cp. also Li and Cohn, 2012). 
 

7. Partial overlap (PO): Regions or objects A and B partially overlap each other in 

space; PO(A,B) or formally defined 

𝑃𝑂(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑂(𝑥, 𝑦) ∧ ¬𝑃(𝑥, 𝑦) ∧ ¬𝑃(𝑦, 𝑥) 

 

                                                
5 According to the default interpretation we assume that these formulae are universally quantified; we are 

omitting universal quantifiers here and elsewhere for the sake of simplicity (cp. also Galton, 2014, 293.) 
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A topological interpretation of 𝑃𝑂(𝑥, 𝑦) is 𝑥 ∩ 𝑦 ≠ ∅ ∧ 𝑥 ⊈ 𝑦 ∧ 𝑦 ⊈ 𝑥. 

If bounded regions (their interiors are indicated) then PO is 𝑥𝑜 ∩ 𝑦𝑜 ≠ ∅ ∧ 𝑥 ⊈ 𝑦 ∧
𝑥 ⊉ 𝑦  (cp. also Li and Cohn, 2012). 
 

8. Equality (EQ): Regions or objects A and B occupy the same space (they are spatially 

identical); EQ(A,B) or formally defined 

𝐸𝑄(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑃(𝑥, 𝑦) ∧ 𝑃(𝑦, 𝑥) 

 

A topological interpretation of 𝐸𝑄(𝑥, 𝑦) is 𝑥 = 𝑦. 
 

9. Discreteness (DR): Regions or objects A and B are discrete from each other; DR(A,B) 

or formally defined 

𝐷𝑅(𝑥, 𝑦) ≡𝑑𝑒𝑓 ¬𝑂(𝑥, 𝑦) 

 

Discreteness can also be expressed as either disconnectedness or external 

connectedness, i.e., 

𝐷𝑅(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝐸𝐶(𝑥, 𝑦) ∨ 𝐷𝐶(𝑥, 𝑦) 

 

10. Tangential proper part (TPP): Region or object A is inside the region or object B 

and A touches the boundary of B; TPP(A,B) or formally defined 

𝑇𝑃𝑃(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑃𝑃(𝑥, 𝑦) ∧ ∃𝑧[𝐸𝐶(𝑧, 𝑥) ∧ 𝐸𝐶(𝑧, 𝑦)] 

 

A topological interpretation of 𝑇𝑃𝑃(𝑥, 𝑦) is 𝑥 ⊂ 𝑦 ∧ 𝜕𝑥 ∩ 𝜕𝑦 ≠ ∅. 
If boundedness of regions and their interior parts are taken into account we can 

write 𝑥 ⊂ 𝑦 ∧ 𝑥 ⊄ 𝑦𝑜 where 𝑦𝑜 stands for bounded region (cp. also Li and Cohn, 2012). 
 

11. Non-tangential proper part (NTPP): Region or object A is inside the region or 

object B and does not touch the boundary of B; NTPP(A,B) or formally defined 

𝑁𝑇𝑃𝑃(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑃𝑃(𝑥, 𝑦) ∧ ¬∃𝑧[𝐸𝐶(𝑧, 𝑥) ∧ 𝐸𝐶(𝑧, 𝑦)] 

 

A topological interpretation of 𝑁𝑇𝑃𝑃(𝑥, 𝑦) is 𝑥 ⊂ 𝑦 ∧ 𝜕𝑥 ∩ 𝜕𝑦 = ∅. And 

interpretation where bounded / interior parts are taken into account 𝑥 ⊂ 𝑦𝑜(cp. also Li 

and Cohn, 2012). 
From TPP and NTPP directly derived relations that will not be further explored in 

this paper: 
(1) Tangential proper part inverse (TPPi): Region or object B is inside the region 

or object A and B touches the boundary of A. 
(2) Non-tangential proper part inverse (NTPPi): Region or object B is inside the 

region or object A and B does not touch the boundary of A. 
 

The Basic principles holding for relations 1-11 relate to symmetry. Most of the 

relations – C, DC, DR, O, PO, EC, EQ – are symmetric. The relations P, PP, TPP, and 

NTPP are not symmetric and can have an inverse interpretation (cp. Galton, 2009, 179). 
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Figure 2. Illustration of RCC-8 relations 

 
The so far described relations are basic topological relations respective to RCC-8. 

However they can be enriched. A useful relation for expressing everyday contexts is 

convex hull (conv) (Cohn et al., 1997, 287ff.; Cohn, 1995; Cohn et al., 1995, a critical 

discussion cp. Dong, 2008, 349f.). 
Convex hull of x is a function conv(x) that can be considered as a spatial primitive6 

referring to the smallest convex region that includes x. “A convex region can be defined 

as one having such a shape that a straight line joining any two points within the region 

does not go outside it. The convex hull of an arbitrary region is then the smallest convex 

region that contains it[.]” (Cohn et al., 1998, 8) 

𝑐𝑜𝑛𝑣(𝑥) ≡𝑑𝑒𝑓 𝐸𝑄(𝑥, 𝑐𝑜𝑛𝑣(𝑥)) 

 

which, in turn, means, e.g., that 

𝑇𝑃𝑃(𝑥, 𝑐𝑜𝑛𝑣(𝑥)); 

𝑃(𝑥, 𝑦) → 𝑃(𝑐𝑜𝑛𝑣(𝑥), 𝑐𝑜𝑛𝑣(𝑦)). 
 

The elementary properties of conv (cp. Galton, 2000, 182) are as follows: 

𝑥 ⊆ 𝑐𝑜𝑛𝑣(𝑥); 
𝑥 ⊆ 𝑦 → 𝑐𝑜𝑛𝑣(𝑥) ⊆ 𝑐𝑜𝑛𝑣(𝑦); 

𝑐𝑜𝑛𝑣(𝑥 ∩ 𝑦) ⊆ 𝑐𝑜𝑛𝑣(𝑥) ∩ 𝑐𝑜𝑛𝑣(𝑦); 

𝑐𝑜𝑛𝑣(𝑥) ∪ 𝑐𝑜𝑛𝑣(𝑦) ⊆ 𝑐𝑜𝑛𝑣(𝑥 ∪ 𝑦). 
 

Conv(x) enables to define regions that are entirely/partly inside or outside the 

convex hull of x but not overlapping x (Figure 3) (Cohn et al., 1997, 288, Randell et al., 

1992): 

 
(1) inside (inside) 

𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝐷𝑅(𝑥, 𝑦) ∧ 𝑃(𝑥, 𝑐𝑜𝑛𝑣(𝑦)) 

or 

 𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 ¬𝑃(𝑥, 𝑦) ∧ 𝑃(𝑥, 𝑐𝑜𝑛𝑣(𝑦)) (Cohn et al., 1995, 836) 

 

(2) partly inside (p_inside) 

𝑝_𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝐷𝑅(𝑥, 𝑦) ∧ 𝑃𝑂(𝑥, 𝑐𝑜𝑛𝑣(𝑦)) 

or 

𝑝_𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 ¬𝑃(𝑥, 𝑦) ∧ 𝑃𝑂(𝑥, 𝑐𝑜𝑛𝑣(𝑦)) ∧ ∃𝑤[𝑃(𝑤, 𝑐𝑜𝑛𝑣(𝑦)) ∧ ¬𝑃(𝑤, 𝑦) ∧

𝑃𝑂(𝑤, 𝑥)] (Cohn et al., 1995, 836) 

 

(3) outside (outside) 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝐷𝑅(𝑥, 𝑐𝑜𝑛𝑣(𝑦)) 

                                                
6 Thus, the underlying formal theory contains two primitive relations C(x,y) and conv(x). 
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or 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 ¬𝑃(𝑥, 𝑦) ∧ ¬∃𝑤[𝑃(𝑤, 𝑐𝑜𝑛𝑣(𝑦)) ∧ ¬𝑃(𝑤, 𝑦) ∧ 𝑃𝑂(𝑤, 𝑥)] (Cohn et 

al., 1995, 836). 

 

Also inverse relation of convexity can be formulated. 

 

 a)  b)  c)  
 

Figure 3. Regions that are a) entirely inside, b) partly inside and c) outside the convex hull 

 
In general, two interpretations of the relation inside(x,y) should be distinguished: a 

topological and geometrical (Randell et al., 1992): in the former case (top_inside) a 

region or an object is inside of another region or object if it is a proper part with an 

surrounding region or object, i.e., there is no cut through the surrounding region or body. 

In geometrical case (geo_inside) an object or a region is inside another but excluding the 

topological containment. 

Accordingly: 

𝑡𝑜𝑝_𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ∧ ∀𝑧[[𝑐𝑜𝑛𝑣(𝑧) ∧ 𝐶(𝑧, 𝑥) ∧ 𝐶(𝑧, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑦)] →

𝑂(𝑧, 𝑦)]; 

𝑔𝑒o_i𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ≡𝑑𝑒𝑓 𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦) ∧ ¬𝑡𝑜p_i𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦). 

 

Thus, topological insideness (containment) has to be distinguished from 

geometrical insideness that contains convex hull relations as its subsets. In the latter 

case, relations referring to inside, partial inside and outside have to be distinguished. 
Keeping in mind the differences between geometric and topological containment, at 

least three geometrically and topologically distinct types can be distinguished (Figure 4) 

(Zwarts, 2017, 14): 
(1) topological enclosure where regions are related by TPP or NTPP (and 

accordingly the inverse relations). E.g., ‘Honey in a closed jar’, ‘A bug in an 

amber'; 
(2) convex geometrical enclosures where partial geometric enclosure 

(𝑝_𝑖𝑛𝑠𝑖𝑑𝑒(𝑥, 𝑦)) is the most prominent instance. E.g., ‘A flower in a vase’; 
(3) scattered geometric enclosure: enclosure is perceived without any topological 

connectedness or containment. E.g., ‘Birds in the trees’. 
 

The convexity relation enables to express configurations of inclusion (alternatively 

they can also be expressed in Wunderlich’s (1993, 124ff.) framework using the so-called 

focusing effects), where there is a partial inclusion (represented by 'in') of F in G and the 

verb expresses a supportive or holding function of G, whereby only a part of F is in 

functional interaction with G and is thus highlighted. But the whole spatial configuration 
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in these cases can be plausibly expressed using convexity relation. Convexity regions 

frequently contain regions of functional interaction. E.g., ‘The pipe (F) held in the mouth 

(G)’, ‘The stick (F) held in the hand (G)’. 

 

a)  b)  c)  
 

 

Figure 4. Three types of ‘in’ in RCC: a) total topological enclosure, b) partial geometric 

enclosure, and c) scattered geometric enclosure (after Zwarts, 2017, 14) 

 
Finally, a relation that can be expressed in applying and combining (1)-(11) 

relations is betweenness (Betw). Object or region B is between A and C if it is also 

between C and A (Miller and Johnson-Laird, 1976, 61), i.e., 𝐵𝑒𝑡𝑤(𝐴, 𝐵, 𝐶) ↔
𝐵𝑒𝑡𝑤(𝐶, 𝐵, 𝐴). 

3. Eigenplace function 
 
As argued before, Eigenplace is a universal and default relation that holds in all spatial 

relations covering static, locational and dynamic, directional configurations, meaning 

that all objects (together with temporal segments) are mapped to spatial regions. If the 

temporal dimension is added then we might define: Every object in time is located in a 

concrete place (in relation with other objects and within the ontology that we are 

proposing) and there are no two objects occupying the same place at the same time. If O 

is a set of arbitrary objects, T is a set of time intervals and R is a set of regions (exact 

locations in, e.g., a coordinate system), then the simplest versions of the Eigenplace 

function are: 

𝐸𝑖𝑔: 𝑂 → 𝑅 

𝐸𝑖𝑔𝑡: 𝑂 × 𝑇 → 𝑅 
 

Accordingly, an atemporal and a temporal version of Eigenplace have to be 

distinguished. 
The idea of Eigenplace corresponds also to the fundamental principle in geography 

that there are no two discrete things that occupy the same region in space at the same 

time (cp. Golledge, 1992, 205). 
In what follows we will, first, explore a more restrictive analysis of spatial 

prepositional relations and their Eigenplace mappings and then move on to a more 

general approach to Eigenplace relations. 
In combining relative and absolute representations we can write 

𝐸𝑖𝑔: 𝑂 → 𝑅𝐶𝐴𝑅𝑇 
 

meaning that a set of objects (O) are always located in concrete place (𝑅𝐶𝐴𝑅𝑇) on a 

Cartesian plane (although other kinds of coordinate representations are possible). 
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If we assume that spatial objects are linked to concrete temporal units (T), either 

points or intervals, 

𝐸𝑖𝑔: 𝑂 × 𝑇 → 𝑅𝐶𝐴𝑅𝑇 
 

further we assume that 

𝑟1, … , 𝑟𝑛 ∈ 𝑅𝐶𝐴𝑅𝑇 

𝑜1, . . , 𝑜𝑛 ∈ 𝑂: 𝑂 ≠ ∅ 

𝑡1, . . , 𝑡𝑛 ∈ 𝑇 
 

if Rel is a subset of spatial relations (RCC extended with some geometric and functional 

primitives) then 

𝐸𝑖𝑔: ⟨𝑅𝑒𝑙, 𝑜1, … , 𝑜𝑛⟩ × 𝑡𝑖 → 𝑟𝑗 

 

What are canonical options for the ways in which objects can occupy regions in 

space? According to Galton (2000, 168-170), if o is an object and r – a region, there are 

several sets of possible relations: 

1. o and r are congruent (r is a possible value of o): DC, EC, PO, EQ 

2. o just fits into r: DC, EC, PO, TPP 

3. o covers r: DC, EC, PO, TPPi 

4. o can fit right inside r: DC, EC, PO, TPP, NTPP 

5. o covers more than r: DC, EC, PO, TPPi, NTPPi 

6. o and r are incommensurate (none of above relations holds): DC, EC, PO 
 

We might express our framework in terms of Galton (2000) by writing 

𝑅𝑒𝑙(𝐸𝑖𝑔(𝑎), 𝐸𝑖𝑔(𝑏)) where Rel is a spatial relation and Eig are Eigenplace of Figure (a) 

or Ground (b). E.g., 𝐷𝐶(𝐸𝑖𝑔(𝑎), 𝐸𝑖𝑔(𝑏)), to denote an object a that is outside of another 

object b; further DC – disconnectedness relation and Eig – the Eigenplace function 

mapping each object to a concrete place. 
In general 

𝑅𝑒𝑙(𝐸𝑖𝑔(𝑎), 𝐸𝑖𝑔(𝑏)) 
 

where 𝑅𝑒𝑙 is one of the canonical RCC relations (except EQ). This means that an object 

a stands in a certain relation to another object b if the position of a stands in this relation 

to the position of object b (Galton, 2000, 168). In total, it means 

𝑅𝑒𝑙(𝐸𝑖𝑔(𝑜1), … , 𝐸𝑖𝑔(𝑜𝑛)) ⟺ 𝑅𝑒𝑙(𝑜1, … , 𝑜𝑛) → 𝑟𝑗 

 

As for the relation EQ, we might write 

𝐸𝑄(𝑜, 𝑟): 𝑜 × 𝑡 → 𝑟 

 

where o is an arbitrary object, t – a time and r – a region (place), which is in turn 

equivalent to the canonical Eigenplace relation. 
To sum up so far, the general schema of the Eigenplace function is 

ℛ(𝑜1, … , 𝑜𝑛:𝑛>1) × 𝑡𝑖 → 𝑟𝑗 

 

where 𝑜1 , … , 𝑜𝑛 are arbitrary objects and 𝑡𝑖 time intervals, and 𝑟𝑗 the corresponding 

region in real (e.g., Cartesian) space; ℛ is any arbitrary spatio-temporal relation. To put 

it more precisely – spatial relations between objects in time occupy a particular region in 
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coordinate space 

⟨ℛ, 𝑜1 , … , 𝑜𝑛:𝑛>1⟩ × 𝑇 → 𝑅 
 

Different spatial relations 𝑅1
𝑠 and 𝑅2

𝑠 between the same set of objects occur either in 

the same or different temporal intervals and different locations in coordinate space 

⟨𝑅1
𝑠, 𝑜1, … , 𝑜𝑛:𝑛>1⟩ × 𝑡𝑖 → 𝑟1 

⟨𝑅2
𝑠 , 𝑜1, … , 𝑜𝑛:𝑛>1⟩ × 𝑡𝑗 → 𝑟2 

 

It should be kept in mind that spatial relations ⟨𝑅1
𝑠, … , 𝑅𝑛

𝑠 ⟩ are ordered with respect 

to canonical RCC relations and generalized relations in such a way that 𝑅𝑒𝑙 ⊂ 𝑅𝑆 ⊆ ℛ. 

Another subset of relations is temporal relations 𝑅𝑡  such that 𝑅𝑡 ⊆ ℛ. We assume 

that 𝑅𝑡operate on the set of temporal intervals and we also assume that 𝑅𝑡 are Allen 

interval relations (Allen, 1983) such that a temporal structure is ⟨𝑅𝑡 , 𝑡1, … , 𝑡𝑗:𝑗>1⟩. 

4. Classical approaches: Eigenplace in prepositions and Figure-

Ground roles  
 
In a narrower sense, an Eigenplace function is an intuitively plausible and formally clear 

approach to the analysis of relations between Figure and Ground (Wunderlich, 1991, 

597, Asbury et al., 2008, 12, Zwarts, 1997, Svenonius, 2010, Mador-Haim and Winter, 

2015) yielding for every “object or event the place it occupies (its ‘Eigenplace’), which 

is some region” (Wunderlich, 1991, 597). Eigenplace functions are related so that every 

object is mapped to a particular place in space and all objects are directly or indirectly 

related in space. 
Classically D. Wunderlich provides a general scheme holding for all spatial 

configurations and particular schemes describing some specific configurations. A 

general scheme for prepositional information says that 
〈𝐹, 𝐺〉 ∈ ⟦𝑃𝑟𝑒𝑝⟧ iff  𝐸𝑖𝑔[𝐹] ⊆ 𝑅𝑃𝑟𝑒𝑝[𝐺] 

 

where F and G are Figure and Ground, Prep is a spatial preposition or other spatial 

expression,  𝑅𝑃𝑟𝑒𝑝 is a neighbourhood function for the preposition Prep, and 𝐸𝑖𝑔 is the 

Eigenplace function.  

The important assumption by Wunderlich is that F-objects and G-objects are paired 

only indirectly in using the neighbourhood region of G (Wunderlich, 1991, 598). The 

neighborhood region of G (search domain) is sensitive to perceptual, geometrical, 

reference frame and functional properties, whereas the properties of F determine whether 

F can be included in the neighborhood region of G, i.e., 𝑅[𝐺]. 
If a function INT[G] yields a set of regions internal to the Ground, then the ‘in’ 

location is 
〈𝐹, 𝐺〉 ∈ ⟦𝑖𝑛⟧ iff 𝐸𝑖𝑔[𝐹] ⊆ 𝐼𝑁𝑇[𝐺] 

 

The Eigenplace function complemented with some other basic functions – such as 

EXT[G] (referring to regions external to G), PROX[G] (referring to regions in the 

proximity of G) and additional markers such as axis-orientation ±𝑉𝐸𝑅𝑇 – allow one to 

represent other spatial relations as well. E.g., 
〈𝐹, 𝐺〉 ∈ ⟦𝑢𝑛𝑑𝑒𝑟⟧ iff  𝐸𝑖𝑔[𝐹] ⊆ 𝐸𝑋𝑇[𝐺, −𝑉𝐸𝑅𝑇]. 
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Wunderlich also introduces a predicate LOC(x,r), meaning that an object x is 

located in a region r and, thus, in fact, fulfills the role of Eigenplace function; and in a 

more general schema 𝐿𝑂𝐶(𝐹, 𝑟[𝐺]), with the meaning that F is located in the region r 

with respect to G (Wunderlich, 1991, 598, Wunderlich, 1993, 113, cp. also Zwarts, 1997, 

60f. for a different framework). The basic truth condition here is: 
𝐿𝑂𝐶(𝐹, 𝑟) is true iff 𝐿[𝑥] ⊆ 𝑟 

 

where L is the Eigenplace of x (place occupied by x) and ‘⊆’ spatial containment 

(Wunderlich, 1993, 114).  

Practically, this makes it possible to express Eigenplace-relations within a lambda-

formalism: 
〈𝐹, 𝐺〉 ∈ ⟦𝑢𝑛𝑑𝑒𝑟⟧ iff  𝐸𝑖𝑔[𝐹] ⊆ 𝐸𝑋𝑇[𝐺, −𝑉𝐸𝑅𝑇] is identical to 

𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐸𝑋𝑇[𝐺, −𝑉𝐸𝑅𝑇]) and  

〈𝐹, 𝐺〉 ∈ ⟦𝑖𝑛⟧ iff  𝐸𝑖𝑔[𝐹] ⊆ 𝐼𝑁𝑇[𝐺] is identical to  

𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐼𝑁𝑇[𝐺]) 
 

Accordingly, the general scheme is 

𝜆𝐺𝜆𝐹 (𝐿𝑂𝐶(𝐹, 𝑟[𝐺]) ∧ 𝒞(𝐹, 𝐺)) 

 

where 𝒞 refers to additional constraints (e.g., relations of contact, intersection, 

enclosure) (Wunderlich, 1991, 599, Wunderlich, 1993, 114). 
Within this framework the formal representation of basic locational prepositions 

can be described as follows (Wunderlich, 1993, 113): 

 
‘in’  𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐼𝑁𝑇[𝐺]) 

‘by’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐸𝑋𝑇[𝐺]) 
‘over’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐸𝑋𝑇[𝐺, +𝑉𝐸𝑅𝑇]) 

‘under’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐸𝑋𝑇[𝐺, −𝑉𝐸𝑅𝑇]) 

‘in front of’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐸𝑋𝑇[𝐺, +𝑜𝑏𝑠]) 

‘behind’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶(𝐹, 𝐸𝑋𝑇[𝐺, −𝑜𝑏𝑠]) 
 

where ‘obs’ means dependence on observer axis: ‘+𝑜𝑏𝑠’ directed toward the observer 

and ‘−𝑜𝑏𝑠’ directed away from the observer. 
In some path-expressions Wunderlich adds a dimension parameter D[F] that is 

relative to the movement of the figure on a path and also additional relations – ENCL (to 

enclose G), INTERSEC (to intersect G), to be parallel to the maximal axis of G (PARAL; 

MAX). The EXT and INT are defined as 𝐸𝑋𝑇 = 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙_𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟_𝑜𝑓 and 𝐼𝑁𝑇 =
𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟_𝑜𝑓, and 𝑃𝑅𝑂𝑋 = 𝐸𝑋𝑇 ∪ 𝐼𝑁𝑇 (Wunderlich, 1993, 115-118). These relations 

allow to model such basic locational prepositions as: 

‘around’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶((𝐹, 𝐸𝑋𝑇[𝐺]) ∧ 𝐸𝑁𝐶𝐿(𝐷[𝐹], 𝐺)) 
‘through’ 𝜆𝐺𝜆𝐹 𝐿𝑂𝐶((𝐹, 𝐼𝑁𝑇[𝐺]) ∧ 𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶(𝐷[𝐹], 𝐺)) 

‘along’𝜆𝐺𝜆𝐹 𝐿𝑂𝐶((𝐹, 𝑃𝑅𝑂𝑋[𝐺]) ∧ 𝑃𝐴𝑅𝐴𝐿(𝐷[𝐹], 𝑀𝐴𝑋[𝐺])) 
 

A further important property is that all objects are located relative to other objects, 

i.e., every object has a neighborhood of other objects. If O is a set of objects, T – set of 

time intervals and R – set of regions then there is a family 𝑈𝑗 of neighborhood-functions:  

𝑈𝑗 = {𝑢𝑗: 𝑂 × 𝑇 → 𝑅}, 𝑗 ∈ 𝑁 
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where 𝑢𝑗(𝑎, 𝑡) is a special (concrete) neighborhood of an object a at time t. Object b can 

be localized relative to a according to a neighborhood-function 𝑢𝑗 such that 

𝑝(𝑏, 𝑡) ⊑ 𝑢𝑗(𝑎, 𝑡) 

 

where ⊑ is a spatial part-of-relation. According to 𝑝(𝑏, 𝑡) ⊑ 𝑢𝑗(𝑎, 𝑡) we can say that the 

place of object b is a part of the j-neighborhood of the object a (cp. Wunderlich and 

Herweg, 1991, 759, 760). Usually the object b serves the role of focal object (Figure), 

whereas a is the reference object (Ground) that enables the localization of b, i.e., 

𝑝(𝐹, 𝑡) ⊑ 𝑢𝑗(𝐺, 𝑡). 

In a more abstract way according to Wunderlich and Herweg (1991, 772f.) we can 

introduce a general localization relation LOC and, thus, the relations between every two 

spatial objects can be expressed as either 

𝜆𝑥𝜆𝑦 𝐿𝑂𝐶(𝑥, 𝑢𝑗(𝑦)) or 

𝜆𝑥𝜆𝑦 𝐿𝑂𝐶[𝑝(𝑥) ⊑ 𝑢𝑗(𝑦)] 

 

where 𝐿𝑂𝐶(𝑥, 𝑅) is a general localization relation with the meaning that the place of an 

individual x is a spatial part of a spatial region R; 𝑈𝑗 is a family of functions 𝑢𝑗 assigning 

certain neighborhoods to individuals and p is a localization function assigning places to 

individuals. According to Wunderlich and Herweg, the neighborhood relation 𝑈𝑗 

contains specific differences between spatial relations between objects (in our case, the 

specific differences are expressed using basic topological and geometric non-functional 

relations together with orientation and distance primitives. E.g., the meaning of a spatial 

preposition ‘on’ can be expressed 

𝑂𝑁(𝑥, 𝑦) ↔ 𝐿𝑂𝐶(𝑥, 𝑂𝑁∗(𝑦)) 
 

where 𝑂𝑁∗ is a specific neighborhood function characterizing ‘on’. More generally 

𝜆𝑦, 𝜆𝑥, 𝐿𝑂𝐶(𝑥, 𝑂𝑁∗(𝑦)) 

 

or, using the Figure and Ground distinction, 

𝜆𝑦, 𝜆𝑥, 𝐿𝑂𝐶(𝐹, 𝑂𝑁∗(𝐺)) 

 

Thus, the meaning of a spatial preposition is a localization relation between objects 

(in the case of the current approach, Figure and Ground objects). According to 

Wunderlich and Herweg (1991, 777), the core pattern of all locative prepositions is the 

following scheme:  

𝜆𝑦, 𝜆𝑥, 𝐿𝑂𝐶(𝑥, 𝑃𝑅𝐸𝑃∗(𝑦)) 

 

where x is the Figure and y the Ground, and 𝑃𝑅𝐸𝑃∗ is a characteristic neighborhood 

function of a y that distinguishes a preposition. E.g.,  

𝜆𝑦, 𝜆𝑥, 𝐿𝑂𝐶(𝑥, 𝐼𝑁∗(𝑦)) 

 

is a general and schematic formal representation of the meaning of the preposition ‘in’. 

The background intuition of 𝐿𝑂𝐶(𝑥, 𝐼𝑁∗(𝑦)) is that there is a region 𝐼𝑁∗(𝑦) that enables 

the localization of x. I.e., not just the Ground but also a special configurational part 

(characterized by IN*) of it enables one to locate the Figure. The localization of the 

Figure (mapped to a spatial region) is enabled only by localization of a Ground (that is 

also mapped to a spatial region and in this case specified by a particular preposition, 
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𝑃𝑅𝐸𝑃∗(𝑦)) (Wunderlich and Herweg, 1991, 777).  

A slightly different representation involving observer-induced axis (d) is the case of 

dimensional prepositions (e.g., describing the area ‘in front of’) (Wunderlich and 

Herweg, 1991, 778f.): e.g., 

𝐵𝐸𝑉𝑂𝑅(𝑥, 𝑦, 𝑑) ↔ 𝐿𝑂𝐶(𝑥, 𝐵𝐸𝑉𝑂𝑅∗(𝑦, 𝑑)) 

 
Thus, in general, objects – in accordance with the Eigenplace function – are always 

mapped on spatial regions and are related to each other.  In certain cases additional 

constraints (e.g., based on functional knowledge) have to be applied 𝒞(𝑥, 𝑦) 

(Wunderlich and Herweg, 1991, 777).7 Such relations can be expressed in the framework 

of an Eigenplace relation 

𝜊 × 𝜏 → 𝓇 

 

where 𝜊 is a type of object, 𝜏 – a type of time intervals and  𝓇 – a type of spatially 

extended concrete regions (concrete regions in space). 𝑏1, … , 𝑏𝑛 , 𝑒1, … , 𝑒𝑛 , 𝑟1, … , 𝑟𝑛 ∈ 𝜊, 

where 𝑏1, … , 𝑏𝑛 is a set of physical objects (e.g., cups, tables, houses), 𝑒1, … , 𝑒𝑛is a set of 

events (e.g., birthday celebration, meeting) and 𝑟1, … , 𝑟𝑛 is the set of regions that are not 

linked to a concrete spatial area (locationally indeterminate shapes, contours). E.g., 

‘Celebration party (event) was in the residential area (locationally indeterminate region) 

in front of the city council building (physical object)’. Paths are also a subset of region 

types 𝑃1, … , 𝑃𝑛 ∈ 𝓇 and 𝑡1, … , 𝑡1 ∈ 𝜏. 
A more robust formulation (involving also time intervals) of an Eigenplace 

function (called Lokalisierungsfunktion p) is provided by Wunderlich and Herweg 

(1991, 758): every object in a time interval occupies a region in space: 

𝑝: 𝑂 × 𝑇 → 𝑅 

 

where O is a set of objects  (whereby also events can be considered as objects; the 

difference is, however, that in the case of events there are no clear topological relations 

like in the case of physical objects), T – a set of time intervals and R – a set of regions 

and p is a certain place. This means that every place (i.e., p(o,t)) is a region that is 

occupied by an object o at time t. 
This formulation of the Eigenplace function corresponds to the loc’ function by 

Kracht (2008, 40, 2002, 179, cp. also Piñón, 1993):  

𝑙𝑜𝑐′: 𝑒 × 𝜏 → 𝑟 

 

where e denotes a type of object, 𝜏 - type of time-points and 𝑟 – type of regions. 

Function  loc’ generates a product of an object and a time point, and returns the region 

the object occupies at this time. 
In expressions of directional spatial relations Eigenplace function refers to the 

sequential order of times and regions. According to Wunderlich and Herweg (1991), 

there is a path-function (Wegfunktion w): 

𝑤: 𝑂 × 𝑆𝑒𝑞𝑇 → 𝑆𝑒𝑞𝑅 

 

where O is a set of objects, T – a set of time intervals, R – a set of regions, and Seq – a 

sequence relation of time intervals or regions; 𝑎, 𝑡𝑖 is a region occupied at a certain time 

                                                
7 To distinguish from the relation connect, a slightly different symbol is used; initially Wunderlich and Herweg 

(1991,777) use C(x,y). 
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𝑡𝑖, where 0 ≤ 𝑖 ≤ 1. Accordingly 𝑎, 𝑡0 is the region at the beginning of a path and 𝑎, 𝑡1is 

a region occupied by an object at the end of a path (cp. Wunderlich and Herweg, 1991, 

759, for an analysis of Eigenplace functions in vector space semantics cp. Zwarts and 

Winter, 2000, 175ff.). A general representation of paths in Eigenplace terms 

(corresponding to the Wegfunktion 𝑤 by Wunderlich and Herrweg, 1991) is:  

𝑃𝑎𝑡ℎ_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝜊 × 𝑆𝑒𝑞 𝜏 → 𝑆𝑒𝑞 𝓇 

 

To formalize this idea in terms consistent in the current approach: If A and B are 

objects or regions, REL is a subset of an extended version of RCC (including additional 

geometric features that are described before), and 𝜏 – a type of time intervals and  𝓇 – a 

type of spatially extended concrete regions (concrete regions in space), then the spatially 

extended path referred to by A and B at a certain time is 

𝑅𝐸𝐿(𝐴, 𝐵) × 𝑆𝑒𝑞𝜏 → 𝑆𝑒𝑞𝓇 
 

such that ⟨𝑡1, … , 𝑡𝑛⟩ ∈ 𝜏, (𝑃1, … , 𝑃𝑛) ∈ 𝑆𝑒𝑞𝓇. 

5. Remarks on time in Eigenplace 
 
Let us assume time as consisting of intervals.8 Intervals are linearly ordered and their 

relations can be constrained as discrete, dense, continuous, bounded or unbounded in 

each direction (Bennett and Galton, 2004, 16). A general temporal ordering is a History 

structure 

ℋ = ⟨𝑆, 𝑇, ≺, 𝐻⟩ 
 

where S is a set of states in the world: 𝑠1, … , 𝑠𝑛. Further we assume that S is a relational 

structure consisting of at least extended RCC. T is a set of time intervals (or points): 

𝑡1, … , 𝑡𝑛; ≺ is irreflexive linear order on T (dense, discrete or continuous). H is a set of 

histories ℎ1, … , ℎ𝑛 , i.e., functions from T to S: 

𝐻: 𝑇 → 𝑆 

 

such that ℎ1: 𝑡1 → 𝑠1 ,…, ℎ𝑛: 𝑡𝑛 → 𝑠𝑛. 
We assume some additional functions to describe terminal parts of intervals: 

𝑏𝑒𝑔(𝑡𝑖) and 𝑒𝑛𝑑(𝑡𝑖) are functions referring to the beginning and end of an interval 𝑡𝑖. 
Further, we agree with Bennett and Galton (2004) and assume a truth functional 

meaning: ⟦𝛼⟧ℎ,𝑡
𝒜  , i.e., denotation of expression 𝛼 at an index ⟨ℎ, 𝑡⟩ and according to the 

assignment 𝒜 determining the values of non-logical constants: e.g. a set of all 

assignments for which an expression 𝜑 is true, i.e., a truth set TS (Bennett and Galton, 

2004, 27f.):  

⟦𝜑⟧𝑇𝑆 = {⟨𝒜, ℎ, 𝑡⟩|⟦𝜑⟧ℎ,𝑡
𝒜 = 𝑡} 

 
Events consist of intervals and relate to event types. One and the same event type 

can refer to several events.  Intervals 𝛿1, … , 𝛿𝑛 satisfy the event sequence 𝑒1, … , 𝑒𝑛 but 

then 𝛿1, … , 𝛿𝑛 has to satisfy the sequence of event types 𝑒1
∗, … , 𝑒𝑛

∗  such that 𝑒𝑖
∗ ⊆ 𝑒𝑖 

                                                
8 We assume that points in both spatial and temporal senses are rather abstractions and special cases than actual 

parts of the perceivable world, therefore preferring non-atomistic intervals and regions and the basic 

constituents. 
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(Bennett and Galton, 2004, 42). 

Next we would like to describe the Eigenplace of an event (cp. Pustejovsky, 2013): 

If an event is a structured object ℰ where a relation R applies at time t, we can write 

⟨𝑅, 𝑜1 , … , 𝑜𝑛 , 𝑡⟩, then the localization of an object in an event is 𝑙𝑜𝑐(𝑜, 𝑡) = 𝑟𝑜. An event 

with its object localizations is ⟨𝑅, 𝑜1, … , 𝑜𝑛 , 𝑟𝑜1, … , 𝑟𝑜𝑛 , 𝑡⟩, where 𝑟𝑜1, … , 𝑟𝑜𝑛 are object 

locations in space.  

Normally spatial objects are transformed in time (there is even an approach 

assuming that events specified via the changes in topological structure are called 

topological events (Jiang and Worboys, 2009, 34)).   

6. Representing vagueness and uncertainty in spatial reasoning 
 
Sometimes we lack the necessary information to determine a spatial location and 

sometimes spatial objects are inherently vague (e.g., hills, swamps). When dealing with 

spatial uncertainty or vagueness, it has to be kept in mind that although every spatial 

object (also vague) has some precise extension in real world (although we do not know it 

or cannot adequately represent it), we still can use relational information to narrow down 

the area where the object can be located. We can frequently relationally specify an area 

where some objects are to be located. This area is a region, or relational structure 

referring to a concrete extension in the real world.  

One way for dealing with vague and uncertain spatial information consistently with 

RCC-based formalisms is to use an anchoring relation9 as defined by Galton and Hood 

(Galton and Hood, 2005, Hood and Galton, 2006, Hood, 2007, for recent applications 

see: Vasardani et al, 2017, Chen et al., 2017, for an approach in formalization of 

common sense reasoning of containment in case of incomplete information: Davis et al., 

2017; alternative approaches on approximate reasoning in RCC5 and RCC8: Bittner and 

Stell, 2000).  

Anchoring relations enable one to define areas based on what is known instead of 

specifying a precise location (which is frequently impossible because of a lack of 

information). Further, there are at least two ways in which spatial information can be 

indeterminate: (a) the spatial object we are dealing with might be vague (i.e., we cannot 

define a precise border for it; e.g., hills, forests are instances of spatial objects where 

they might gradually cease to exist or transform into other spatial objects), (b) spatial 

information can be uncertain, i.e., we might not have enough knowledge to describe the 

object (see Hood and Galton, 2006, Hood, 2007). 
 According to this approach we can refer to a known area that in turn includes a 

region that is indefinite within this area. E.g., we know that an accident occurred in an 

area where two districts intersect (and if Distr stands for a district and t for time interval 

and r for a concrete region in real world) then: 

𝑃𝑂(𝐷𝑖𝑠𝑡𝑟1, 𝐷𝑖𝑠𝑡𝑟2) × 𝑡𝑖 → 𝑟𝑎 

 

However, the exact location of the accident 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡(𝑟𝑏) within 𝑟𝑎 is not known. 

If 𝑟𝑏 ⊂ 𝑟𝑎 and if it is known that it occurred somewhere in front of two houses we can 

write:  

𝐼𝑁_𝐹𝑅𝑂𝑁𝑇_𝑂𝐹(𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡, 𝐷𝐶(𝐻𝑜𝑢𝑠𝑒1, 𝐻𝑜𝑢𝑠𝑒2)) × 𝑡𝑖 → 𝑟𝑏 

                                                
9 The anchoring relation basically corresponds to the Eigenplace relation. 
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However, we do not know the exact coordinates of 𝑟𝑏. (This is the reason why we write 

𝑟𝑏
𝑉 or 𝑟𝑎

𝑉 to indicate that 𝑟𝑎 or 𝑟𝑏 is vague in epistemic terms.  I.e., 

𝐼𝑁_𝐹𝑅𝑂𝑁𝑇_𝑂𝐹(𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡, 𝐷𝐶(𝐻𝑜𝑢𝑠𝑒1, 𝐻𝑜𝑢𝑠𝑒2)) × 𝑡𝑖 → 𝑟𝑏
𝑉) 

 
The idea behind the anchoring approach is that there are two different spatial 

structures: 
a. information space – information regarding spatial objects, locations and their 

relations to each other. Information space is expressed in a relational language 

(i.e., language that is sufficiently rich to allow expressing spatial relations). 

Information space also contains non-spatial information (e.g., temporal, 

emotional, social). 
b. precise space – consisting of exact locations of objects as expressed in a 

numerical coordinate system (e.g., Cartesian system). Exact space corresponds 

to an extensional point set topology in a coordinate system. 
 

Information space and precise space are related by mapping information space to 

precise space in a way that allows more than one type of relation in information space to 

correspond to one and only one region in precise space. There are several different ways 

in which objects in information space can be linked to precise space. 
If R is a spatial relation (e.g., one of the extended RCC relations) applying to a set 

of objects 𝑜1, … , 𝑜𝑛, ℭ – precise space (e.g., Cartesian coordinate space) and 𝑟𝑘 – a 

region of it (such that 𝑟𝑘 ∈ ℭ) then 

𝑅(𝑜1, … , 𝑜𝑛) × 𝑡𝑖 → 𝑟𝑘 
 

Possibilities of anchoring according to Galton and Hood, 2005; Hood and Galton, 

2006; if 𝑜1, … , 𝑜𝑛 ∈ 𝑂 and 𝑟𝑘 ∈ ℭ are:  

An object 𝑜𝑖  is anchored in 𝑟𝑘 means that 𝑜𝑖  is located within/inside 𝑟𝑘; 
An object 𝑜𝑖  is anchored over 𝑟𝑘 means that  𝑟𝑘 falls within the location of 𝑜𝑖  (the 

location of object 𝑜𝑖  contains the whole 𝑟𝑘); 

An object 𝑜𝑖  is anchored outside 𝑟𝑘 means that there is no part of 𝑜𝑖  that is located inside 

of 𝑟𝑘; 

An object 𝑜𝑖  is anchored alongside 𝑟𝑘 means that 𝑜𝑖  abuts 𝑟𝑘. 
 

These anchoring relations 𝔸(𝑂, ℭ) are relating sets of objects (O) in relational space 

with sets of locations (exact regions) in precise space ℭ. The intuition behind this is that 

objects are always located in precise regions even if we do not know exact location.  

The idea of anchoring is plausible since we usually talk about objects relationally 

and use vague and uncertain concepts even though objects do have exact locations (even 

if we do not know them, which is usually the case). Assuming 𝑟𝑗 , 𝑟𝑘 ∈ ℭ and 𝑜𝑖 , 𝑜𝑗 ∈ 𝑂, 

and loc is a function denoting the location of an object (𝑙𝑜𝑐 ∈ 𝔸), we can say according 

to Hood and Galton (2006) that two constraints apply to anchoring: 
(1) if an object is anchored over a region then this region is a part of any region this 

object is anchored in 

(𝑖𝑛, 𝑟𝑗) ∈ 𝑙𝑜𝑐(𝑜𝑖) ∧ (𝑜𝑣𝑒𝑟, 𝑟𝑘) ∈ 𝑙𝑜𝑐(𝑜𝑖) → 𝑟𝑘 ⊆ 𝑟𝑗 and  

(2) there are no two regions in which an object is anchored such that they are 

disjoint 

(𝑖𝑛, 𝑟𝑗) ∈ 𝑙𝑜𝑐(𝑜𝑖) ∧ (𝑖𝑛, 𝑟𝑘) ∈ 𝑙𝑜𝑐(𝑜𝑖) → 𝑟𝑘 ∩ 𝑟𝑗 ≠ ∅ 



 On an Eigenplace Function – Mapping Relation to Absolute Space  241 

 

 
An approach where anchoring is applied to the analysis of preposition ‘at’ is 

provided by Vasardani et al., (2017). Imagine the utterance: ‘Let us meet at the park’. 

The meeting point is anchored either (a) inside, (b) along its boundaries, or (c) close to 

but outside the park. According to Vasardani et al. (2017), a Figure object 𝐹 ∈ 𝑜1, … , 𝑜𝑛 

is at Ground object (anchoring area) if and only if F is anchored in the region 𝑟𝑗 by 

Ground object 𝐺 ∈ 𝑜1, … , 𝑜𝑛. 

𝑅(𝑜1, … , 𝑜𝑛) × 𝑡𝑖 → 𝑟𝑗 

 
Accordingly: 

F is in G if F is anchored in the region by G; 
F is near G if F is anchored in the relative complement of G. 

 
If 𝕣 is anchoring relation 𝕣 ∈ {𝑖𝑛,  𝑜𝑣𝑒𝑟, 𝑎𝑙𝑜𝑛𝑔𝑠𝑖𝑑𝑒, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒}: 𝕣 ⊆ 𝔸 then 

anchoring happens as an ordered pair ⟨𝕣𝑖 , 𝑟𝑗⟩ where 𝑟 is a region in the precise space. 

Further let us assume that 𝑟𝑗 ∈ {𝑟𝑗
𝐺 , 𝑟𝑗

𝐴} where 𝑟𝑗
𝐴 means the surrounding area and 𝑟𝑗

𝐺– 

area occupied by the Ground object. Then we can define (cp. Vasardani, Stirling and 

Winter, 2017): 

𝐹 𝑎𝑡 𝐺 ≡𝑑𝑒𝑓 (𝑖𝑛, 𝑟𝑗
𝐴) ∈ 𝑙𝑜𝑐(𝐹) 

𝐹 𝑒𝑥𝑎𝑐𝑡𝑙𝑦_𝑎𝑡 𝐺 ≡𝑑𝑒𝑓 (𝑖𝑛, 𝑟𝑗
𝐺) ∈ 𝑙𝑜𝑐(𝐹) 

𝐹 𝑖𝑛 𝐺 ≡𝑑𝑒𝑓 (𝑖𝑛, 𝑟𝑗
𝐺) ∈ 𝑙𝑜𝑐(𝐹) 

𝐹 𝑛𝑒𝑎𝑟 𝐺 ≡𝑑𝑒𝑓 (𝑖𝑛, 𝑟𝑗
𝐴−𝑟𝑗

𝐺) ∈ 𝑙𝑜𝑐(𝐹) 

 

The regions seem to be mutually nested in the way that 𝑟𝑗
𝐺 ⊆ 𝑟𝑗

𝐴. 

Finally, another approach to vagueness within a region-based formalism is to apply 

tolerance relations to RCC relations (Peters and Wasilewski, 2012). 

If 𝑥1, … , 𝑥𝑛 ∈ 𝑋 is set of arbitrary spatial entities, R set of relations on X containing 

an extended RCC, and if 𝜉 is a set of tolerance relations on X, and 𝑡1, … , 𝑡𝑛 ∈ 𝑇 set of 

temporal intervals, and 𝑐1, … , 𝑐𝑛 ∈ 𝐶 set of concrete locations in physical space then 

𝐸𝑖𝑔: ⟨𝑅, 𝑥1, … , 𝑥𝑛 , 𝜉 × 𝑡𝑖⟩ → 𝑐𝑗 

 
When substituting 𝑥1, … , 𝑥𝑛 with 𝑜1, … , 𝑜𝑛 we come to a somewhat similar picture to 

that of anchoring.   

 

7. Representing motion and change of location 
 
Eigenplace can be also modelled when motion is modelled (cp. Lawvere and Schanuel, 

2009, 3f.): 

𝑓𝑚𝑜𝑡𝑖𝑜𝑛: 𝑡𝑖𝑚𝑒 → 𝑠𝑝𝑎𝑐𝑒 
 

or in more detail we can distinguish between  

𝑓1: 𝑡𝑖𝑚𝑒 → 𝑠𝑝𝑎𝑐𝑒 

𝑓2: 𝑠𝑝𝑎𝑐𝑒 → 𝑙𝑖𝑛𝑒 

𝑓3: 𝑠𝑝𝑎𝑐𝑒 → 𝑝𝑙𝑎𝑛𝑒 
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According to the composition of the functions we can write: 

𝑓𝑎: 𝑡𝑖𝑚𝑒 → 𝑙𝑖𝑛𝑒 

𝑓𝑏: 𝑡𝑖𝑚𝑒 → 𝑝𝑙𝑎𝑛𝑒 
 
where line is, e.g., the level of flight and plane is the place occupied by the shadow of a 

flying object or position of an object located on earth. If for the sake of simplicity we are 

assuming that usual objects are not flying and this feature is left out of consideration for 

a while, we can write 

𝐸𝑖𝑔𝑚𝑜𝑡𝑖𝑜𝑛: ⟨𝑅1(𝑜1, . . , 𝑜𝑛) × 𝑡1, … , 𝑅𝑛(𝑜1, . . , 𝑜𝑛) × 𝑡𝑛⟩ → 𝑟1, … , 𝑟𝑛  
 

If o is an object and r is a region (or another object) and ⟨𝑃1
𝑎 , … , 𝑃𝑛:𝑛≥1

𝑎 ⟩ are 

consecutive segments of a path 𝑃𝑎, then canonically entering a region can be modeled as 

a movement at least with EC, PO, and TPP (for details and additional relations cp. 

Galton, 2000, 282-284): 

𝑀𝑜𝑣𝐸𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑎𝑟𝑒𝑔𝑖𝑜𝑛⟨𝐸𝐶(𝑜, 𝑟, 𝑃1
𝑎), 𝑃𝑂(𝑜, 𝑟, 𝑃2

𝑎), 𝑇𝑃𝑃(𝑜, 𝑟, 𝑃3
𝑎)⟩ 

 
A crucial component of the process of entering a region is the following regularity 

𝐸𝑛𝑡𝑒𝑟(𝑜, 𝑟, 𝑃1
𝑎) → 𝑃𝑂(𝑜, 𝑟, 𝑃2

𝑎) 
 

where Enter(o,r) denotes relation of o entering r. Informally, when an object enters a 

region, a part of it is inside and a part is outside of that region (i.e., at least in a certain 

interval of time the relation between o and r is PO).  

Canonical set of possibilities before, during entering, and after entering: 

⟨((𝐷𝐶(𝑜, 𝑟) ∨ 𝐸𝐶(𝑜, 𝑟) ∨ 𝑃𝑂(𝑜, 𝑟))𝑃1
𝑎) , 𝐸𝐶(𝑜, 𝑟, 𝑃2

𝑎), 𝑃𝑂(𝑜, 𝑟, 𝑃3
𝑎), 

𝑇𝑃𝑃(𝑜, 𝑟, 𝑃4
𝑎), ((𝑁𝑇𝑃𝑃(𝑜, 𝑟) ∨ 𝑇𝑃𝑃(𝑜, 𝑟) ∨ 𝑃𝑂(𝑜, 𝑟))𝑃5

𝑎)⟩ 

 

Another crucial change of location relationship is coming into contact. This can 

minimally be modelled with DC and EC: 

𝑀𝑜𝑣𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑛𝑡𝑜 𝑐𝑜𝑛𝑡𝑎𝑐𝑡⟨𝐷𝐶(𝑜, 𝑟, 𝑃1
𝑎), 𝐸𝐶(𝑜, 𝑟, 𝑃2

𝑎)⟩ 

 
If o further enters into r, then relation PO follows, but this is not necessary the 

case: 

⟨𝐷𝐶(𝑜, 𝑟, 𝑃1
𝑎), 𝐸𝐶(𝑜, 𝑟, 𝑃2

𝑎), ((𝑃𝑂(𝑜, 𝑟) ∨ 𝐸𝐶(𝑜, 𝑟) ∨ 𝐷𝐶(𝑜, 𝑟))𝑃3
𝑎)⟩ 

 
Another possibility is movement of an object from one region to another (Galton, 

2000, 286). Two possible cases can be distinguished: 
a. Movement starts in the first region and ends in the second (e.g., ‘John went 

from his office to canteen’); 
b. Starting of the movement contains adjacency and ends with adjacency (e.g. 

‘Mike went from the chair to the window’). 

 
Accordingly: 

𝑀𝑜𝑣𝑓𝑟𝑜𝑚_𝑡𝑜_𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔_𝑟𝑒𝑔𝑖𝑜𝑛⟨𝑇𝑃𝑃(𝑜, 𝑟1, 𝑃1
𝑎), 𝑇𝑃𝑃(𝑜, 𝑟2, 𝑃2

𝑎)⟩ 

𝑀𝑜𝑣𝑓𝑟𝑜𝑚_𝑡𝑜_𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡_𝑟𝑒𝑔𝑖𝑜𝑛⟨𝐸𝐶(𝑜, 𝑟1, 𝑃1
𝑎), 𝐸𝐶(𝑜, 𝑟2, 𝑃2

𝑎)⟩ 

 
Of course, a movement from one region to another can have the starting point as 
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containing a region and can end with the relation of adjacency (or vice versa). 
According to a more recent account (Mador-Haim and Winter, 2015), Eigenplace 

could be expressed (in a slightly modified way according to the current terminology): a 

binary relation 𝐟𝐚𝐫_𝐟𝐫𝐨𝐦(𝑭, 𝑮) refers to the following two-place predicate location 

linking locations (i.e., Eigenplaces) of Figure and Ground – 𝑙𝑜𝑐(𝑭) and 𝑙𝑜𝑐(𝑮). 

According to Mador-Haim and Winter, Eigenspace (in their terminology) of a Figure is a 

point (F) whereas Eigenspace of a Ground is a region (G) (cp. Mador-Haim and Winter, 

2015, 442): 

𝑙𝑜𝑐(𝑭) = 𝐹 

𝑙𝑜𝑐(𝑮) = 𝐺 

 

This means that the logical form 𝐟𝐚𝐫_𝐟𝐫𝐨𝐦(𝑭, 𝑮) expresses the relation far_from 

between a point F and a region G. However, in the current framework this simply means 

that F is a concrete and constrained region whereas G is a larger and possibly (although 

not always) vague or indefinite region (which is the case in far_from). 
 The core idea by Mador-Haim and Winter (2015) is the Property-Eigenspace 

Hypothesis (442-443), according to which a relation is between an entity (Figure) and a 

property (Ground): If F is a Figure and gp a property of the Ground then 

far_from(𝑙𝑜𝑐(𝑭), 𝑙𝑜𝑐(gp)) is far_from relation holding between Eigenplace of Figure 

and Eigenplace of the properties occupied by Ground. Property-Eigenspace Hypothesis 

means that every Ground, i.e., property’s Eigenspace, “is the union of Eigenspaces for 

entities in its extension” (Mador-Haim and Winter, 2015, 443). If gp is the set of 

Eigenspaces for properties, then 

loc(gp) = ⋃{𝑙𝑜𝑐(𝑥): 𝑥 ∈ 𝐠𝐩} 
 

Therefore, 

far_from(𝐹, ⋃{𝑙𝑜𝑐(𝑥): 𝑥 ∈ 𝐠𝐩}) 
 

If F is a figure and G is a Ground and 𝒢 is a set of Grounds, then in the framework 

by Mador-Haim and Winter (2015, 468) some of the core spatial relations can be 

modelled 

far_from(𝐹, ⋃ 𝒢) ⇔ ∀𝐺 ∈ 𝒢. far_from(𝐹, 𝐺) 
close_to(𝐹, ⋃ 𝒢) ⇔ ∃𝐺 ∈ 𝒢. close_to(𝐹, 𝐺) 

outside(𝐹, ⋃ 𝒢) ⇔ ∀𝐺 ∈ 𝒢. outside(𝐹, 𝐺) 

inside(𝐹, ⋃ 𝒢) ⇔ ∃𝐺 ∈ 𝒢. inside(𝐹, 𝐺) 
 

Consistently with their approach (Mador-Haim and Winter, 2015, 472f.) we can 

model part-whole relations: if F is a subpart of G, then 𝑙𝑜𝑐(𝐹) ⊆ 𝑙𝑜𝑐(𝐺). Therefore, if 

the regions or elements in the set ℱ are subparts of G, then ⋃𝐹∈ℱ𝑙𝑜𝑐(𝐹) ⊆ 𝑙𝑜𝑐(𝐺). 
According to our framework 

⟨𝑓𝑎𝑟_𝑓𝑟𝑜𝑚, 𝐹, 𝐺⟩ × 𝑡𝑖 → 𝑟𝑛. 

8. Conclusion 
 

The Eigenplace relation covers the core of the processes occurring when mapping 

relational spatial and temporal information to a coordinate space. This mapping is an 

essential step once cognitive structures (operating in relational spatio-temporal space) 
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are linked with mathematical coordinate structures operating in numerical terms outside 

of the human mind.  

In our approach, we have defined an ontology that can be used in applications of 

Eigenplace to resolve spatial vagueness in static and dynamic terms (covering simple 

and more complex types of movement and motion in space). This corresponds to the 

idea that the trajectory of an object in space is always linked to a function in time (i.e., 

there are no spatial movements lacking temporal correlates). 

A particularly important direction in our approach is to map vague relational space 

and accurate space by using the spatial anchoring relation (Galton and Hood, 2005, 

Hood and Galton, 2006).  The anchoring relation is central in spatial communication in 

general and spatial dialogue systems in particular. Although, cognitively, spatio-

temporal existence of objects is always relational and can be cognitively represented in 

vague or uncertain ways, in virtue of anchoring they can be mapped toprecise coordinate 

space (i.e., relational objects have exact numerical coordinate correlates), in principle 

independently of whether we know them or not. 

Our developed spatio-temporal ontology operates in an extended RCC formalism 

(Cohn et al., 1997) and is flexible and open to potentially include other constituents and 

operators (for functional extensions see also Šķilters et al., 2024). Based on the operator 

of connectedness (a core operator from which the majority of other operators can be 

derived) we are able to describe most of the geometrically, topologically, and 

functionally crucial operators that operate in everyday environments. The most 

important is the functional operator of locational control, binding the figure and ground 

object according to the principle that, once the ground is moved in space / time, the 

figure is moved as well. In these cases, containment is perceived even if it does not apply 

in the topological sense. 

An underlying principle in our approach is the functional prominence of spatio-

temporal objects assuming the asymmetry of central (Figure) object and reference 

(Ground) object that operates in spatial, temporal, and spatio-temporal settings. In the 

case of temporal situations we are dealing with events as the objects. 

Our results can be applied for natural language contexts (especially for modeling 

the semantics of spatial expressions) but are also usable for non-linguistic spatial 

information. Although some parts of our approach have been experimentally tested (e.g., 

Žilinskaitė-Šinkūnienė et al., 2019, Zariņa et al., 2023), there are several spatio-temporal 

relations (e.g., type of movement and motion, topological features of temporal objects) 

that can still be both experimentally and computationally tested. 

Abbreviations 
 

F – Figure object 

G – Ground object 

RCC-8 – Region Connection Calculus 8 
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