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Abstract.  The rapid rise in the popularity of cloud computing can be attributed to its inherent 

advantages. However, its expanding infrastructure leads to higher energy consumption and 

increased network latency. Virtual machine consolidation (VMC) and dynamic power 

management (DPM) are popular methods to improve energy efficiency. However, these energy-

saving approaches are incompatible with data replication. Our approach in this study is called 

EnE-Rep, that categorizes cloud data center nodes based on workload and applies targeted 

strategies for each category. In addition, EnE-Rep leverages a robust collection of components 

including a load manager, energy monitor, and replicator for achieving energy-efficient data 

replication. Furthermore, intelligent placement decisions are made based on key factors like CPU 

utilization, server proximity, available bandwidth, and memory usage. Finally, CloudSim 

simulations validate the effectiveness of EnE-Rep, demonstrating significant reductions in energy 

consumption alongside improved performance metrics such as VM migration frequency, host 

shutdown rate, and data access time. 

 
Keywords: Carbon Emission, Cloud Computing, Energy Efficiency, Data replication, Data center, 

Data-Intensive Computing. 

 

1. Introduction 
 

The rapid proliferation of cloud computing within the contemporary technological 

landscape can be attributed to its inherent advantages such as its ability to leverage a 

pool of shared resources that are readily scalable to meet user demands (Balakrishnan et 

al., 2017), Ruan et al., 2013). Cloud networks function by aggregating heterogeneous 

computing nodes from diverse locations. These nodes are then dynamically provisioned 

to users on an as-needed basis, offering a flexible and cost-effective solution. Service 

Level Agreements (SLAs) further govern the specifics of these cloud services, outlining 

performance guarantees and resource allocation. This 'on-demand scalability', a key 

feature of cloud computing, allows users to dynamically adjust resource utilization based 

on their evolving needs (Ding et al., 2015). Consequently, the scalability feature is 
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further bolstered by the "pay-as-you-go" pricing model, a revolutionary aspect of cloud 

computing (Buyya, 2009). By eliminating the need for upfront hardware and software 

investments, cloud computing empowers businesses to streamline operations and 

dedicate resources to core competencies (Beloglazov et al., 2012).  Furthermore, 

economies of scale achieved through shared infrastructure contribute to the significant 

cost-effectiveness that drives widespread adoption of cloud computing solutions. 

       According to a report by CISCO, a staggering 94% of the total workload was 

processed by cloud computing in 2021. This widespread adoption can be attributed 

primarily to the ability of cloud infrastructure to provide access from anywhere in the 

world. Consequently, by 2020, a significant portion, 67%, of enterprise infrastructure 

had shifted to the cloud. Furthermore, cloud computing spending has grown at a 

remarkable pace, outpacing overall IT spending by a factor of six between 2015 and 

2020.  Currently, more than half of all IT spending goes towards cloud computing 

solutions (Kappelman et al., 2022). However, while the dynamism and flexibility of the 

cloud have undoubtedly fueled its growth, these features also present challenges, 

particularly regarding resource management, scheduling, and energy consumption 

(Jennings and Stadler, 2015), Ksentini et al., 2014). By 2020, cloud data center (DC) 

energy consumption was projected to reach an alarming 140B KW/H annually, 

equivalent to the energy produced by approximately 50 power plants. The financial and 

environmental costs associated with this immense energy consumption are significant. 

Quantifying this impact, the annual financial cost has reached $13 billion whereas the 

environmental cost translates to 100 million metric tons of CO2 emissions (Mytton, 

2020). This high energy consumption is further reflected in global data center usage, 

which accounts for an estimated 205-Terawatt hours of power consumption per year 

which represents a significant 1% of the world's total energy consumption (Bonzi, 2021). 

The environmental impact is further emphasized by the fact that in 2018, data centers 

were responsible for a substantial 900 billion kilograms of carbon emissions, releasing 

approximately 4.4 kilograms of CO2 every hour (Bonzi, 2021).  

       Beyond scalability, another key challenge for cloud computing is efficient resource 

management, which directly impacts cost-effectiveness. In United States alone, estimates 

suggest that there are nearly three million data centers (DCs) accommodating 

approximately 12 million servers (Jahangir et al., 2021). However, it is worth noting that 

up to 30% of these servers are deemed unnecessary, with many others being 

underutilized. Despite this redundancy, the collective power consumption of these 

servers amounts to a substantial 140 billion KW/h annually, contributing to an alarming 

150 million metric tons of carbon emissions per year. Studies reveal that roughly 15-

30% of data center equipment consumes energy while idle. In fact, server utilization 

rates typically hover between a meager 5% and 15%, even though they continue to draw 

full power (Jahangir et al., 2021). This underscores a critical inefficiency, indicating that 

server utilization in data centers falls significantly short of optimal levels. To address the 

challenge of rising energy consumption, cloud computing leverages techniques like 

dynamic power management (DPM) and virtual machine (VM) consolidation. VM 

consolidation involves migrating workloads from underutilized systems to others, 

allowing idle servers to be powered off. This approach has demonstrably reduced peak 

power consumption of servers during idle states – from 50% to 20% over the past decade 

(Pierson and Hlavacs, 2015). 

       In addition, the rapid growth of the internet presents a significant challenge to 

achieving the goal of green computing. This rapid expansion, characterized by an 
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increase in the number of users, devices and data results in an unconventional source of 

increased energy consumption. According to a report by CISCO, global internet users 

are estimated to reach 5.3 billion by 2023, representing two-thirds of the world's 

population (Zhang et al., 2019). Furthermore, per capita device ownership is expected to 

reach 3.6 devices, with a total of 29.3 billion devices by 2023. Recent developments in 

the Internet of Things (IoT) are further accelerating the growth of the internet, with an 

estimated 14.7 billion smart devices, connected for communication, are expected to be 

operational by 2023 (Zhang et al., 2019). Similarly, the rapid growth in internet activity 

leads to sharp increase in data volume. For instance, approximately 300 million mobile 

applications have been downloaded by 2020 alone (Zhang et al., 2019). This exponential 

increase in data generation inflates the data volume that is projected to reach a staggering 

150 zettabytes by 2024 (Kireev et al., 2019). On the other hand, in 2020, individual data 

generation reached an estimated 1.7 megabytes per second and 2.5 quintillion bytes per 

day. Underscoring the rapid growth, it is estimated that 90% of the world's data has been 

produced in just the last two years (Roser, 2022). These rising trends contribute to a 

growing data storage demand in the data centers (DCs), resultantly, storage alone 

accounts for 11% of total DC power consumption (Jahangir et al., 2021). Furthermore, 

the common practice of storing multiple copies of the same data within DCs 

significantly expands the data volume (Jahangir et al., 2021). 

       Therefore, the growing volume of big data and the challenge of data latency requires 

the use of well-established mechanisms such as data replication. In cloud environments, 

data replication plays an important role in achieving reliability and fault tolerance that 

ensures adherence to Service Level Agreements (SLAs). This process involves copying 

essential data closer to the client, minimizing the distance data must travel, and reducing 

latency. Data replication follows a three-phase process: staging, placing, and moving. 

However, a significant drawback of data replication is that once a specific node is 

activated, it cannot be deactivated, even when the node is idle. The key reason of the 

drawback lies in continuous operation stemming from the node's responsibility to 

maintain data availability causing a conflict with the conventional energy-saving 

techniques like VM consolidation and dynamic power management. Additionally, the 

increasing frequency of data replication results in a higher number of idle nodes hosting 

replicated data, leading to substantial energy wastage. 

       This study presents a novel approach that addresses the challenge of balancing data 

replication with energy efficiency in cloud computing. The proposed approach integrates 

two conflicting paradigms including energy efficiency and data replication. Energy 

efficiency requires shutting down underutilized nodes, whereas data replication aims to 

place replicated data on underloaded nodes for faster access (potentially saving time as 

compared to complex retrieval algorithms). Additionally, the study presents a 

mechanism that enables simultaneous operation of data replication and dynamic power 

management (DPM) including an intelligent data replication placement strategy. The 

placement strategy categorizes the nodes based on their current workloads and 

implements a tailored policy for each workload category. Based on CPU utilization, the 

workloads are categorized as underloaded, normally-loaded, and overloaded 

respectively. Underloaded nodes are powered off through DPM for energy efficiency, 

whereas the workload of overloaded nodes is balanced via a load balancer for optimal 

performance. However, neither underloaded nor overloaded nodes are considered while 

making decisions about the data replication placement. The data replication is hosted 

only upon the normally-loaded nodes that neither hinder the process of DPM nor 
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degrade performance during the data replication process by becoming unresponsive. 

Data replication is hosted only on the normally-loaded nodes, ensuring they neither 

impede DPM processes nor compromise the performance during the replication process 

due to unresponsiveness.  

 

       Furthermore, the decision of replication placement is dependent on factors such as 

CPU utilization, proximity to requesting clients, available bandwidth, and available 

memory. The proposed approach outlines the rationale for initial placement of the 

replica as well as continuously monitors the host for these factors even after the 

placement. In case of the current host become unsustainable, the replica is automatically 

migrated to a new, more suitable node. The proposed EnE-Rep introduces several key 

features for achieving balanced resource utilization and energy efficiency in cloud data 

center given as following: 

• Introduction of a framework that categorizes hosts within the cloud data centers 

into underloaded, normally-loaded, and overloaded based on the workload. 

• Implementation of a double threshold mechanism that activates the load 

manager and energy monitor in response to the dynamic and unpredictable 

workloads typically encountered in cloud data centers. 

• Integration of a replicator module capable of intelligently selecting an energy-

efficient node for replica placement based on the factors such as CPU 

utilization, proximity, bandwidth, and memory. 

• Development of an architecture incorporating VM selection methods for 

facilitating VM migration from overloaded and underloaded hosts. 

• Evaluation of the proposed algorithm's performance using CloudSim, and 

Planetlab (a real-world workload consisting of 800 cloud data centers 

distributed across 500 distinct locations worldwide). 

• Comparative analysis of the results with an approach that employs intelligent 

placement of data replication based on popularity for energy consumption.  

Section 2 presents the related work; Section 3 clearly defines the problem statement; 

Section 4 introduces the proposed EnE-Rep model; Section 5 describes the experimental 

setup used for evaluation; Section 6 presents results and relevant discussion; and finally, 

Section 7 presents the conclusion based on the discussion in section 6 and potential 

avenues for future work. 

 

2. Related Work 
 

Data replication involves the decisions regarding the creation, storage, placement, and 

processing of a necessary replica. Replication decisions, which vary based on context 

including centralized, distributed, offline, or online, significantly affect the system 

performance and user experiences. Similarly, replication placement is an important 

aspect of data replication, particularly, the decision regarding the optimal location for 

transfer the replica poses a significant challenge. Therefore, placement scheduling 

should carefully be managed for preventing network congestion, ensuring replica 

availability, and maintaining efficient access times. A concise overview of the relevant 

studies is presented as following: 
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    Atrey et al. (Atrey et al., 2019) proposed a scalable placement strategy for distributed 

cloud storage systems which partitions the data to manage large workloads efficiently. 

The researchers incorporate two scalable algorithms for efficiently addressing the 

computational demands. By partitioning data, the revised model enhances the system 

scalability and resource utilization. In addition, the model enhances system performance 

by reduces processing time and computational cost. However, the effectiveness of the 

partitioning model may vary depending upon data characteristics which necessitates the 

maintenance of data integrity and accessibility. Additionally, the algorithms may 

introduce complexity and potential trade-offs in terms of accuracy and resource usage. 

Similarly, Zhang (Zhang, 2020) introduced a time-efficient multi-objective approach for 

the replication placement problem in cloud storage systems by prioritizing Quality of 

Service (QoS) restrictions to minimize system response time. The proposed approach 

ensures an improved user experience and meets performance requirements by 

implementing QoS restrictions, as well as providing a balanced solution through the 

simultaneous optimization of various factors. However, potential drawbacks of the 

proposed approach include the complexity of the optimization process, challenges in 

meeting all QoS restrictions, and the assumption that minimizing the response time is 

always the primary objective, which may not align with other system requirements or 

trade-offs.  

       Subsequently, Ao and Psounis (2020) proposed a framework for efficient resource 

allocation in cloud computing systems for handling hierarchical and heterogeneous 

tasks. The framework minimizes task completion time by leveraging two key strategies 

including data replication for system reliability and a hierarchical resource management 

structure for optimizing performance. However, the framework's effectiveness depends 

on precise resource allocation algorithms and workload characterization. Inaccurate or 

inefficient allocation methods may lead to suboptimal task completion times. In addition, 

the hierarchical structure may introduce additional complexity and overhead. On the 

other hand, Huang et al. (Huang et al., 2020) proposed a mining-based approach for 

discovering interactions between data entities in cloud storage. The proposed approach 

aims to improve efficiency and reduce energy consumption by optimizing resource 

allocation. Additionally, the mining approach incorporates replica placement and backup 

for enhanced data availability and fault tolerance. However, inaccurate capture of 

interaction and relevant relationships may limit the potential efficiency gains. Moreover, 

replica placement and backup require additional storage space and computing resources.  

       Next, Bacis et al. (Bacis et al., 2019) proposed a data management approach for 

cloud storage that guarantees data availability and confidentiality during node failures. 

The proposed approach leverages "all-or-nothing" transformations and fountain codes. 

All-or-nothing transformation secures data integrity and confidentiality through 

encryption, whereas fountain codes enable data recovery from transmission errors or 

failures. However, weak encryption or inefficient fountain codes may compromise 

security or data availability in addition to the computational overhead by encryption and 

decoding processes. Similarly, Khalili Azimi (2019) proposed a data management 

approach based on a bee colony optimization for enhancing data availability in cloud 

storage. The bee colony optimization algorithm provides a decentralized and self-

organizing approach, mimicking the behavior of a bee colony to efficiently search for 

optimal replication configurations. Consequently, the system demonstrates robustness 

against the changing conditions and optimize replica placement based on factors such as 

data importance, workload patterns, and resource availability. However, accurate 
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decision-making is significant, as inefficient choices can result in wasted resources. 

Moreover, Edwin et al. (Edwin et al., 2019) introduced a dynamic and cost-effective data 

replication approach that enhances data availability and the replication process. The data 

replication approach utilizes a multi-objective optimization scheme that prioritizes cost-

effective replication by considering replica costs in various data centers. In addition, the 

knapsack algorithm is enhanced to balance availability and load during replication, 

optimizing cost-effectiveness and load balancing. By dynamically adjusting replication 

levels based on cost and availability, the proposed approach optimizes resource 

utilization and reduces unnecessary overhead. However, performance of the data 

replication approach depends on the accuracy of the cost model and the knapsack 

algorithm; inaccurate cost estimates may result in suboptimal replication decisions, 

thereby impacting cost-effectiveness. Furthermore, Mostafa (2020) introduced a data 

replication consistency method for cloud-fog environments for improving system 

availability, fault tolerance, and Quality of Service (QoS). The research aims to prioritize 

the preparation of the system for potential availability issues to ensure continuous 

service. The implementation of data replication consistency enhances fault tolerance, 

minimizing data loss and disruptions, which leads to a more reliable and consistent user 

experience (QoS). However, inadequate or inconsistent replication can cause data 

inconsistencies. Additionally, the trade-off between system availability and resource 

utilization should be carefully managed to avoid excessive replication overhead. 

       On the other hand, Ramanan and Vivekanandan (2019) investigated the security 

vulnerabilities in cloud systems using a stochastic diffusion search algorithm for 

optimizing data replication costs. The stochastic algorithm promotes efficient resource 

utilization and cost savings by intelligently distributing replicas based on dynamic 

factors such as workload, resource availability, and network conditions. In addition, the 

stochastic diffusion algorithm strengthens cloud system security, safeguarding sensitive 

data from unauthorized access. However, aggressive cost reduction through inaccurate 

modeling or the algorithm's inherent randomness (stochastic nature) may pose scalability 

challenges in large cloud deployments. Conversely, Abbes et al. (Abbes et al., 2020) 

explored virtualizing container concepts for distributed applications in cloud storage. 

The research predicts replication factors (i.e., number of copies) needed for maintaining 

availability during container failures using experimental forecasting based on regression 

analysis. Although, virtualization improves resource utilization and scalability for 

containers, however, the regression approach used for replica placement relies heavily 

on the quality of data, assumed linear relationships, potentially overlooking various 

factors affecting availability. 

       Alternatively, Tahir et al. (Tahir et al., 2021) addresses user privacy and data 

integrity concerns in cloud systems using a Genetic Algorithm (GA) for generating 

encryption and decryption keys. The proposed tailored approach enhances data security 

and user privacy, ensuring the confidentiality of sensitive information. However, the 

computational complexity of the GA approach may strain system resources, potentially 

affecting performance. Furthermore, safeguarding the secure storage and management of 

generated keys is essential for upholding data integrity and privacy. Subsequently, Babar 

et al. (Nazir et al., 2018) proposed the CDSS-RPS data replication system, a two-phase 

approach for optimizing replica placement and file access time in cloud storage. In first 

phase, a centralized decision system, leverages node computing capacity for optimal 

replication placement. On the other hand, the second phase considers factors like access 

frequency, storage capacity, and response time for improving access time. Although, 
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Gridsim-based implementation validates the effectiveness of the two-phase CDSS-RPS 

data replication system, however, accurate estimations of computing capacity and 

response time are significant in managing replica placement and balancing file access. 

Finally, Ebadi et al. (Tagne Fute et al., 2023) proposed a hybrid heuristic called, Hybrid 

Particle Swarm Optimization Tabu Search (HPSOTS) for intelligent data replica 

placement.  Due to the trade-off between replication and energy efficiency, the proposed 

research categorizes the problem as NP-hard. HPSOTS is a nature-inspired algorithm 

that achieves significant improvements in Total Energy Consumption (TEC) and cost as 

compared to existing approaches. By evaluating multiple options for fulfilling read or 

write requests based on energy consumption, the study lays the foundation for our 

proposed work. A brief summary of most related studies is presented in Table I. 

 

3. Problem Statement  

 
Database replication is an important approach in cloud computing for improving data 

access times. However, in dynamic and heterogeneous cloud environments with 

unpredictable workloads, existing data replication scheduling approaches can lead to 

inefficiencies: 

Overloaded Hosts: Replication tasks scheduled on overloaded hosts can increase data 

access times due to the computational overhead of complex replication algorithms, 

potentially violating Service Level Agreements (SLAs). 

Underloaded Hosts: Replication tasks placed on underloaded hosts lead to wasted 

energy consumption. These hosts cannot be powered down for energy savings due to the 

ongoing replication tasks they support for other nodes. This combined effect leads to 

increased energy consumption and potential SLA violations in cloud data centers. 

 

 

3.1. Research Objectives 

 
This study aims to develop a novel data replication scheduling approach that addresses 

the limitations of existing methods by: 

Optimizing Resource Allocation: The proposed approach seeks to consider real-time 

workload information for scheduling replication tasks on suitable hosts, avoiding 

overloaded nodes. 

Minimizing Energy Consumption: Replication tasks are intended to be placed on 

underloaded hosts that are likely to be powered down for energy savings. By addressing 

these challenges, the proposed approach can lead to significant reductions in energy 

consumption and improve the overall efficiency of data replication in dynamic cloud 

environments. 
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Table 1. Comparative Summary of Related Work 

 

  

4. Research Methodology of the Proposed EnE-Rep Model  
 

This study introduces an inclusive model designed to optimize the benefits of the data 

replication process while simultaneously reducing the overall system energy 

consumption. The model, called EnE-Rep, categorizes nodes into three distinct groups: 

underloaded, normally-loaded, and overloaded. For each category, a tailored strategy is 

implemented such that overloaded nodes are balanced, whereas underloaded nodes are 

efficiently shut down using virtual machine consolidation and dynamic power 

management methods for energy efficiency. Similarly, this section provides a 

comprehensive overview of the components and nuances comprising the architecture of 

the proposed model. Major subsections present the discussion on topics such as 

replication request submission, SLA checking, utilization management, load 

management, energy management, sorting management, and periodic recursion 

monitoring respectively.  
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Nevertheless, the underlying system prioritizes honoring Service Level Agreements 

(SLAs) for time-constrained users. An initial check ensures any optimization process 

won't introduce delays that could violate these SLAs. Subsequently, the method 

leverages a heuristic-based approach to determine CPU utilization for each node (Hastie 

et al. 2009). The heuristic-based approach is then utilized for categorizing the nodes as 

overloaded, underloaded, or normally-loaded. CPU utilization exceeds 85% in the 

overloaded nodes, whereas it remains below 30% in the underloaded nodes (Beloglazov 

et al., 2012; Hastie et al., 2009). 

       Once the workload of a node is determined, the overloaded nodes are directed to the 

load balancer module. The load balancer module identifies the least occupied node from 

the entire host list and creates a new VM on a suitable node for transfering the excessive 

load. Similarly, the workload from underloaded nodes is migrated, and the nodes are 

vacated. These vacated nodes are subsequently powered off to reduce the overall energy 

consumption of the system. In the final phase of the proposed approach, normal nodes 

are sorted in ascending order based on their CPU utilization, proximity, bandwidth, and 

available memory. Percentile values from all sorted lists are standardized to bring them 

onto the same scale. The weighted average, calculated as the summation of the product 

of weights and quantities divided by the summation of weights, is determined according 

to Eq. (1). 

 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 =
∑(𝑾𝒆𝒊𝒈𝒉𝒕𝒔×𝑸𝒖𝒂𝒏𝒕𝒊𝒕𝒊𝒆𝒔)

∑ 𝑾𝒆𝒊𝒈𝒉𝒕𝒔
=

∑ 𝒘𝒊𝒙𝒊
𝒏
𝒊=𝟏

∑ 𝒘𝒊
𝒏
𝒊=𝟏

                                    (1)  

 

where 𝒘𝒊 represents the weight of the objective in a priority-based arranged list and 𝒏 

indicates the total number of objectives. Subsequently, leveraging the weighted average 

calculations from Eq. (1), EnE-Rep creates a weighted average list for all normal nodes 

in contention for replica placement using Eq. (2).  

 

 

          𝑾𝑨𝒗𝒈 = 40 ∗ 𝐶𝑃𝑈 + 30 ∗ 𝑃𝑟𝑜𝑥 + 20 ∗ 𝐵𝑊 + 10 ∗                            (2) 

 

where weights ranging from 40 to 10 are assigned to factors influencing replica 

placement, with higher weights indicating greater influence on the final score. Similarly, 

𝑪𝑷𝑼 represents the CPU utilization of the node, reflecting the node's processing 

capacity. On the other hand, 𝑷𝒓𝒐𝒙 shows the proximity of the node to the requester(s) 

who will access the replica, whereas the bandwidth 𝑩𝑾 represents data transfer 

capabilities between the node and requesters. Finally, available memory (𝑹𝑨𝑴) on the 

node is important for storing replica data effectively. The node with the lowest score on 

this list is selected to host the data replica. This selection approach prioritizes a balance 

between resource utilization, data access speed, and energy efficiency. A detailed 

explanation of each sub-module within EnE-Rep is provided in the following sections. 

4.1. Replication Request Submission (RRS) 
 

       The RRS module initiates the data replication process under two primary conditions. 

Firstly, any modification made to the original data (denoted as "t") triggers replication, 

ensuring all replicas are updated with the latest version. Secondly, when a remote user 
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accesses data from a remote replica repository and requests an updated copy, replication 

is triggered to provide the user with the most recent version of the data.  

4.2. SLA Manager 
 

       The SLA Manager prioritizes adherence to Service Level Agreements (SLAs) for 

time-constrained users. Given the complex algorithms involved in data replication to 

ensure proximity to the requester, the SLA Manager identifies and separates cloudlets 

with time constraints from those operating under more flexible timeframes. Resultantly, 

the exclusion of time-constrained nodes from subsequent optimization steps effectively 

prevents potential SLA violations, thereby ensuring the fulfillment of their SLAs. 

4.3. Utilization Manager 
 

       The utilization manager in EnE-Rep plays an important role by conducting a 

comprehensive analysis of CPU utilization across all nodes prior to scheduling data 

replication. This analysis serves as a critical filtering mechanism where overloaded 

nodes surpassing a utilization threshold are routed to the load balancer module for 

resource optimization, and underloaded nodes with low utilization are earmarked for 

potential migration and energy conservation through the energy monitor module. Finally, 

nodes with balanced CPU utilization are directed to the replicator section for data 

replication tasks. This intelligent allocation process ensures optimal resource utilization 

and prevents overloading nodes with replication tasks. 

4.4. Load Monitor 
 

       The Load Monitor, receiving a list of overloaded nodes from the Utilization 

Manager, acts as a pivotal task reassignment unit for ensuring workload distribution 

across the system and prevent resource bottlenecks. The operations of Load Monitor 

consist of three main steps; first, it identifies suitable underloaded hosts from the entire 

host pool, considering factors like available CPU capacity, memory, and bandwidth. 

Secondly, Load Monitor assesses the projected workload on the candidate host post-load 

transfer, ensuring it remains below a predefined upper threshold to prevent overloading. 

Upon passing the feasibility check, the Load Monitor executes the workload transfer, 

potentially involving the creation of a new virtual machine (VM) on the underloaded 

host. Finally, after completing load balancing via VM consolidation and Dynamic Power 

Management (DPM), the Load Monitor forwards an updated list of "normalized" hosts—

those with balanced workloads—to the Replicator module for optimal replica placement 

decisions. 

4.5. Replicator  
 

       The replicator module serves as the focal point for determining data replication 

placement, considering four key factors: CPU utilization, proximity, bandwidth, and 

available memory across all hosts. To facilitate fair comparison, lists corresponding to 

each property are created and processed through a percentile calculator by aligning units 

across diverse metrics. Subsequently, weights for each property are computed using Eq. 
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(2), and their weighted average is calculated. This process identifies the optimal host for 

data replication, ensuring efficient resource utilization. Furthermore, the hosting VM's 

priority is elevated to mitigate any delays incurred during decision-making that 

guarantees swift data access.   

 

4.6. Energy Monitor 
 

       The proposed model comprises several key components, each playing a significant 

role in optimizing system efficiency. Firstly, underloaded nodes identified by the 

utilization manager undergo dynamic power management, where idle nodes are shut 

down to decrease overall energy consumption. This process involves transferring the 

workload of nodes below the CPU utilization threshold to other suitable hosts based on 

CPU, bandwidth, and memory considerations before shutting them down, as depicted in 

Algorithm 1. Additionally, Figure 1 illustrates the comprehensive architecture of the 

model, depicting its major components and their interactions. Figure shows the end 

user's interaction with remote hosts where cloud computing services are accessed. 

Behind these remote hosts, the proposed methodology's operational intricacies are 

implemented. Following optimization, the relevant data is integrated into the central 

database.  

 

 
Figure 1. Detailed Architecture and Interaction Diagram of EnE-Rep 

 

       The algorithm for energy-efficient data replication outlines the optimization 

mechanism applied to non-time constrained cloudlets. CPU utilization is prioritized, 

with heavily utilized nodes given precedence. Lists for proximity, bandwidth, and 

memory are sorted and transformed into percentile lists to standardize units. The 

weighted average formula generates an energy-efficient list, with component weights 

determined by their perceived importance. 
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Algorithm 1: EnE-Replication for Normal Ranged Nodes 

Input: Hosts within the utilization range <Normal > 

Output: Replica placement on the BEST among <Normal >hosts 

1 cloudlet.makeReplica() 
2 forall hostsinhostList do 
3 if replica==True then 
4 if TC==False then 
5 cputilSorted =  getUtil ( hostList ) 
6 Utilization list of hosts is created and sorted ascendingly 

As greater is preferred 
7 proxSorD = getProx (

  
  hostList ) 

8 Proximity list of all hosts is created and sorted descendingly 
As lesser is 
preferred 9 bwSor = getBw (   hostList ) 

10 Bandwidth utilization list is created and sorted ascendingly 
asgreaterispreferred 

11 ramSor = getRam ( hostList ) 
12 RAM utilization list of all hosts is created and sorted 

Ascendingly as greater is preferred 
13 
14 cputilPercen ← calPercen ( cputilSorted ) 

proxPercen ← calPercen ( proxSorD ) 
bwPercen ← calPercen ( bwSor ) 
ramPercen ← calPercen ( ramSor ) 

15 
16 eeList.add(i)=40*cputilPercen.get(i)+30*proxPercen.get(i) 

+20 *bwPercen.get(i)+10*ramPercen.get(i); 
17 forall itemineeList do 
18 if current < previous then 
19 Best ← current 

 
20 end 
21 Best ← previous 
22 end 
23 allocateReplica ( Best.getId ()) 

 
 

24 setPriorityHigh ( getReplicatedVm ()) 

 
 

 
25 end 
26 end 
27 end 
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        The algorithm then ranks normally-loaded nodes based on their total score across 

all parameters, selecting the most suitable host for data replication. This approach aims 

to maximize energy savings by efficiently utilizing system resources and minimizing 

idle states. To compensate for optimization time, the host node's priority is set to high. 

      The algorithm for energy-efficient data replication in data-intensive clouds outlines 

the operational framework of the proposed approach. Upon receiving a cloudlet with a 

data replication scheduling request, the model employs its optimization mechanism that 

is tailored for energy-efficient placement through exclusive attention to non-time 

constrained cloudlets. Initially, the algorithm retrieves CPU utilization data and arranges 

it in descending order to prioritize highly occupied nodes. Similarly, sorted lists are 

generated for proximity, bandwidth, and memory along with the percentile lists are 

established for standardizing the units. Nodes with the highest numerical values for each 

parameter top their respective lists, and an energy-efficient list is computed using a 

weighted average formula. Component weights are assigned based on perceived 

significance; however, CPU utilization is prioritized due to its relevance to workload 

segregation. The algorithm evaluates all four weighted average values for each node to 

rank them based on their collective scores. Among normally-loaded nodes, those with 

the highest scores are deemed optimal for data replication placement, striking a balance 

between workload and energy efficiency. This strategy facilitates the idling and 

shutdown of underloaded nodes, contributing to significant energy savings. Finally, host 

node priority is elevated for optimization time that ensures efficient scheduling of data 

replication tasks. 

5. Experimental Setup 
 

The Infrastructure as a Service (IaaS) model in cloud computing offers extensive 

computing resources with advantages like repeatability and resource control which 

necessitates thorough testing of proposed data replication approach on large-scale Data 

Centers (DCs). However, physical platforms of such magnitude are challenging to 

procure, prompting the use of simulation. Leveraging Cloudsim toolkit v3.0 proves ideal 

for this purpose that is tailored for cloud environments and sparing users from intricate 

details. Cloudsim facilitates dynamic workload integration through the inclusion of 

energy consumption modeling and accounting functionalities. Following is a detailed 

overview of the infrastructure setup and the submitted jobs for simulation:  

5.1. Resource modeling  
 

       This study utilizes the CloudSim Toolkit 2.0 platform (Beloglazov et al. 2012), 

developed by Beloglazov and Buyya, for simulating a data center (DC) environment. 

The simulated DC comprises 800 Physical Machines (PMs), with half being HP 

ProLiant ML110 G4 servers and the other half HP ProLiant ML110 G5 servers. Table 2 

provides detailed specifications regarding RAM and Processing Element (PE) for these 

server types. The server models such as HP ProLiant ML110 G4 and G5, demonstrate 

varying RAM and PE specifications, as presented in Table 2. Similarly, the processing 

power, measured in MIPS (Million Instructions Per Second), varies between the server 

models. The HP ProLiant ML110 G4 delivers 1860 MIPS, whereas the G5 model is 

more powerful at 2660 MIPS. Additionally, each server is allocated a bandwidth of 1000     
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MBs. Virtual   Machines (VMs) in this experiment emulate Amazon EC2 instances, 

however, configured with a single core. The simulations are conducted on actual 

hardware platforms, comprising HP ProLiant and IBM GX3250 machines. 

 

 
Table 2. Resource Specification of the Servers used in Simulation 

 

Instance Type Specification 

Extra Large 2000 MIPs, 3750 MB 

Medium 2500 MIPs, 850 MB 

Small 1000 MIPs, 1700 MB 

Micro 500 MIPs, 613 MB 

 

 

5.2. Application modeling 
 

       Table 3 shows the parameters adjusted to create distinct workload scenarios, 

presented in ascending order of intensity. The application model utilizes authentic data 

sourced from the PlanetLab project that is specifically gleaned from traces of over 1000 

VMs allocated to diverse users. These traces, derived from PlanetLab's CoMon Project 

spanning 10 days, depict authentic workload patterns. The rationale behind employing 

linear workload variations stems from the understanding that power consumption 

correlates linearly with factors such as CPU utilization, memory usage, storage access, 

and network activity. This methodology enables the evaluation of the EnE-Rep model's 

scalability across varying workload intensities. 

5.3. Performance evaluation parameters  
 

       EnE-Rep differs from traditional replication considerations by placing a primary 

emphasis on energy efficiency over factors such as cost, response time, and reliability. 

On the other hand, conventional approaches prioritize various performance metrics as 

compared to EnE-Rep's novel strategy revolves around minimizing power consumption. 

Studies identify the direct correlation between a system's power usage and factors 

including CPU utilization and memory usage (Beloglazov et al. 2012; Fan et al., 2007; 

Kusic et al., 2009). In addition, data access time is influenced by factors like distance 

and available bandwidth. However, EnE-Rep introduces a unique energy conservation 

method by strategically migrating virtual machines (VMs) from specific hosts, enabling 

their shutdown to conserve energy. Subsequently, to assess the energy-saving benefits, 

EnE-Rep evaluates key metrics including the total number of VM migrations, successful 

host shutdowns, and components of data access time such as VM selection, host 

selection, and VM relocation time.  EnE-Rep actively evaluates its energy-saving 

effectiveness through several key metrics. These metrics include the number of VM 

migrations enabling host shutdowns, and the various components of data access time 

including VM selection, host selection, and VM relocation time. 
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Table 3. Workload Variations Applied in the Experiment 

 

Workload 

Set 

Job file size 

(Bytes) 

Job length 

(MI) 

No. of 

VMs 

No. of 

Hosts 

1 300 2500 1000 1000 

2 650 5000 2000 2000 

3 1000 7500 3000 3000 

4 1300 10000 4000 4000 

5 1500 13000 5000 5000 

6 1800 16000 6000 6000 

7 2200 20000 7000 7000 

8 2600 25000 8000 8000 

9 3000 30000 10520 8000 

 

5.4. Energy consumption 
 

       Cloud data centers are major consumers of energy that is primarily attributed to 

CPUs, storage disks, and network equipment, with CPUs being the most power-intensive 

components. Traditionally, techniques like Dynamic Voltage and Frequency Scaling 

(DVFS) have been employed to mitigate CPU power consumption through adjusting 

operating frequency and voltage. Despite its near-linear relationship between power and 

frequency, DVFS is limited by the finite number of available frequency states. In 

contrast, EnE-Rep adopts a more significant approach by powering down idle nodes 

based on the notion that around 70% of power is consumed by idle resources. 

Leveraging this strategy enables EnE-Rep to achieve greater energy savings compared to 

DVFS. Energy consumption is measured using Eq (3) (Cidon et al. 2013) given as 

following: 

 

                                  𝑃(𝑢) = 𝐾 ∗ 𝑃𝑚𝑎𝑥 + (1 − 𝐾) ∗ 𝑃𝑚𝑎𝑥 ∗ 𝑈                                          (3) 

 

where 𝑃𝑚𝑎𝑥 denotes the maximum power consumption under full server utilization, 𝐾 

represents the fraction of power consumed by the idle server, and 𝑈 signifies the CPU 

utilization. Subsequently, energy is computed using Equation (4) (Bagheri and 

Mohsenzadeh, 2016) given as following: 

                                                    𝐸 = ∫ 𝑃(𝑢)  𝑑𝑡  
∞

0

                                                             (4) 

Where 𝐸 represents the total energy consumption over the time period starting from 𝑡 

and extending indefinitely into the future. Similarly, 𝑃(𝑢) denotes the power 

consumption, which is a function of the CPU utilization 𝑢(𝑡). The function 𝑃(𝑢) gives 

the power consumed by the system at any given time 𝑡. Subsequently, 𝑡 is the lower 

limit of the integral, representing the starting time from which the process of measuring 
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energy consumption has begun. Finally, ∞ highlights the upper limit of the integral, 

indicating that the energy consumption is being considered over an infinite time period, 

essentially summing up the power consumption from time 𝑡 to the end of time (or 

theoretically, forever).  

Validation of the Equation 

It is important to consider the context in which equation (4) is applied. The equation 

assumes that the system, such as a server, operates continuously starting from time 𝑡 

without a defined endpoint. This assumption is particularly relevant for systems like 

cloud servers, which are often designed to run indefinitely. Additionally, the power 

consumption 𝑃(𝑢) is time-dependent because the CPU utilization 𝑢(𝑡) varies over time. 

Equation (4) accounts for this variability, recognizing that power consumption is not 

constant but fluctuates with the level of CPU usage at any given moment. Furthermore, 

the integral in the equation accumulates the total energy consumed over the period from 

time 𝑡 to ∞. Since energy is the product of power and time, integrating the power over 

this period yields the total energy consumption, providing a comprehensive measure of 

the system's energy usage.  

The choice of ∞ as the upper limit in the integral can be justified on several grounds. 

Firstly, it ensures theoretical completeness by covering the entire potential lifespan of 

the system, thus accounting for all possible future energy consumption. This is 

particularly relevant in theoretical models where the system is assumed to operate 

indefinitely. Secondly, using ∞ as the upper limit is essential for modeling long-term 

energy consumption, especially in systems like cloud data centers which are designed for 

continuous operation. This employed approach aids in understanding long-term energy 

consumption patterns, which is important for making informed decisions about energy 

efficiency, sustainability, and cost management. Additionally, integrating up to ∞ 

enables worst-case scenario analysis by estimating the maximum possible energy 

consumption over time, which is valuable for planning purposes such as provisioning 

energy resources and designing cooling systems. 

For comparison, the energy consumption is calculated as  

                     𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (
𝐾𝑤

ℎ
) =

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

3600 ∗  1000
                           (5) 

6. Results and discussion 
 

This section presents a detailed performance evaluation of the proposed EnE-Rep model 

against the classical scheduling policies and a metaheuristic technique called Hybrid 

Particle Swarm Optimization Tabu Search (HPSOTS). Figure 2 presents a heatmap that 

visually compares the number of VM migrations required by different scheduling 

techniques for all seven tested scheduling policies. Figure shows that the scheduling 

policies without optimization (thrrs, iqrmmt, iqrrs, lrrs, madmc, thrmc, and thrmu) suffer 

from significantly higher VM migrations, as indicated by the darker shades in the 

heatmap. This is due to their less effective approach of placing replications on the first 

available host without considering the load or suitability of the host. However, HPSOTS 

exhibits a reduction in VM migrations as compared to non-optimized techniques. 
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HPSOTS applies some level of intelligence in selecting hosts for replication placement, 

potentially considering factors that contribute to energy consumption. On the other hand, 

EnE-Rep demonstrates the most significant reduction in VM migrations as compared to 

both non-optimized scheduling methods and the HPSOTS metaheuristic technique. This 

prominent improvement is evidenced by the decrease in migrations from a staggering 

44200 to a more manageable 25349. The success of EnE-Rep in minimizing migrations 

can be attributed to its intelligent approach to replica placement. EnE-Rep adopts a 

double threshold policy for CPU utilization, ensuring that replications are only placed on 

hosts with CPU usage within a specific, optimal range. By avoiding overloaded hosts, 

EnE-Rep eliminates the need for frequent migrations that is caused by the performance 

bottlenecks which results from insufficient resources. Additionally, by steering clear of 

underloaded hosts, EnE-Rep prevents unnecessary migrations triggered by inefficient 

resource allocation on underutilized machines.  

 

 
Figure 2. Heatmap for number of VM migrations during the execution 

 

 

       Similarly, Figure 3 explores another important aspect of VM migrations – the mean 

time before a VM migration becomes necessary. The analysis in Figure 3 compares how 

long VMs stay on a host before needing to be migrated. Unsurprisingly, non-optimized 

policies perform inefficntly due to their lack of migration consideration. The high 

frequency of unnecessary migrations in these policies directly affects their performance. 

However, HPSOTS prioritizes energy efficiency by evaluating the entire host 

population, nonetheless, it might not prioritize factors that directly reduce the number of 
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VM migrations. On the other hand, EnE-Rep shows better performance as compared to 

classical scheduling policies, particularly from HPSOTS by its adept optimization of 

VM migration frequency. The optimization is accomplished through a targeted 

approach: firstly, by assessing the CPU utilization of potential host candidates, and 

secondly, by prioritizing the placement of replications exclusively on hosts with normal 

CPU loads. This meticulous methodology yields several notable advantages. Firstly, it 

leads to reduced disruptions by allowing VMs to remain on suitable hosts for extended 

durations, thus mitigating the need for frequent migrations. Secondly, it enhances system 

performance by avoiding overloaded hosts, thereby averting potential performance 

degradation that is caused by the resource bottlenecks which culminates from frequent 

migrations.  

       Subsequently, Figure 4 presents a comparison of the time taken by each method to 

select a suitable host for data replication placement. HPSOTS exhibits the longest 

selection time because it evaluates the entire host population and ranks them based on 

energy consumption, thereby prioritizing comprehensive analysis over speed. In contrast, 

both EnE-Rep and the non-optimized methods demonstrate relatively similar selection 

times.  

 

 
 

Figure 3. Mean time before a VM migration throughout the execution 
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Figure 4. Mean time for host selection for placement of data replication 

 

 

       These approaches share a key characteristic, i.e., these methods focus on evaluating 

a single candidate host at a time, rather than the entire pool. Therefore, once a suitable 

host is found and meets the requirements, the replication is placed, and the selection 

process ends. However, in non-optimized techniques, if the initial candidate is 

unsuitable, an iterative search might be necessary to find an alternative that leads to 

longer selection times. EnE-Rep, on the other hand, leverages a predefined CPU 

utilization threshold, allowing it to identify suitable hosts faster as compared to the non-

optimized technique's potentially time-consuming iterative search. By focusing on a 

specific CPU utilization range, EnE-Rep efficiently narrows down potential candidates 

that results in shorter selection time.  

       Finally, Figure 5 illustrates the energy consumption patterns of the proposed EnE-

Rep against the other methods across all seven scheduling policies, providing a 

comprehensive view of their energy usage. The non-optimized techniques, represented 

by the blue bars, exhibit notably higher energy consumption in kilowatts. This 

heightened consumption can be attributed to two main factors. Firstly, non-optimized 

techniques trigger a substantial number of VM migrations, resulting in significant 

performance degradation. Additionally, these techniques adopt an unintelligent approach 

to replication placement, indiscriminately utilizing any available host regardless of its 

current workload. The utilized indiscriminate placement leads to disadvantages such as 

the replications placed on overloaded hosts trigger frequent migrations to address 

performance bottlenecks caused by insufficient resources. Conversely, placing 
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replications on underloaded hosts results in wasted energy consumption because these 

machines remain powered-on despite having minimal workload. Resultantly, overall 

increase in energy consumption is observed in non-optimized techniques. In contrast, 

while HPSOTS focuses on energy reduction, it does not explicitly consider the impact of 

replication placement on migration frequency. This oversight may result in the selection 

of energy-efficient hosts that are not optimal in terms of migration that can limit 

HPSOTS’s overall energy savings as compared to EnE-Rep. 

 

 
 

Figure 5. Energy consumption comparison of different strategies 

 

7. Conclusion and future work 
 

Cloud computing offers several advantages such as ease of use, affordability, 

adaptability, growth potential, and dependability, however, its growing infrastructure 

demands more energy and raises network distribution challenges. In this study, we have 

proposed EnE-Rep that integrates dynamic power management (DPM) and data 

replication for optimizing energy usage and enhance performance in simulations.  

       The performance evaluation of the EnE-Rep model against classical scheduling 

policies and the HPSOTS metaheuristic technique highlights its effectiveness in 

minimizing VM migrations and reducing energy consumption in cloud computing 

environments. EnE-Rep's intelligent replica placement strategy, guided by a double 

threshold policy for CPU utilization, effectively avoids overloaded and underloaded 

hosts, thereby mitigating the need for frequent migrations caused by performance 
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bottlenecks. In contrast, non-optimized techniques exhibit higher VM migration 

frequencies and performance degradation. Although, HPSOTS prioritizes energy 

efficiency, however, its oversight of migration reduction may limit its overall energy 

savings compared to EnE-Rep. Additionally, EnE-Rep's efficient host selection process 

results in shorter selection times as compared to non-optimized techniques. The analysis 

highlights the drawbacks of non-optimized approaches and emphasizing the importance 

of intelligent replica placement in reducing energy consumption. Furthermore, the fusion 

of data replication and energy efficiency in EnE-Rep presents promising avenues for 

greener and more stable ICT infrastructures.  

      Future work could explore proactive threshold strategies and decentralized 

approaches to enhance performance in stochastic cloud computing environments, 

ultimately advancing the goal of sustainable and efficient technology infrastructure. 

 

Abbreviations 

 

DC     Data center  

DPM    Dynamic power management  

DVFS     Dynamic Voltage and Frequency Scaling  

GA     Genetic Algorithm 

HPSOTS   Hybrid Particle Swarm Optimization Tabu Search 

MIPS    Million Instructions Per Second  

PE      Processing Element  

PMs    Physical Machines  

QoS     Quality of Service  

SLAs    Service Level Agreements  

TEC    Total Energy Consumption 

VMC    Virtual machine consolidation  
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