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Abstract. In this article, we focus on the pre-training of visual autonomous driving agents in the
context of imitation learning. Current methods often rely on a classification-based pre-training,
which we hypothesise to be holding back from extending capabilities of implicit image under-
standing. We propose pre-training the visual encoder of a driving agent using the self-distillation
with no labels (DINO) method, which relies on a self-supervised learning paradigm.Our exper-
iments in CARLA environment in accordance with the Leaderboard benchmark reveal that the
proposed pre-training is more efficient than classification-based pre-training, and is on par with
the recently proposed pre-training based on visual place recognition (VPRPre).
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1 Introduction

While autonomous driving of robots and vehicles can be achieved by breaking down
the task of driving into individual sub-tasks and assigning a module for each, end-to-
end learning takes the holistic approach. End-to-end learning of driving often relies
upon imitation learning, i.e., given a corpus of data (for e.g., visual demonstrations), a
task is learned with a machine learning method, e.g., neural network. Hence, instead of
singularly learning every sub-task or programming it into a module, an entire skill is
learned in the form of a policy from data. To absorb the precise behaviour from data (or
demonstrations) needed to safely drive in the real world, datasets of vast sizes may be
required along with stronger methods that learn from what is available. This is one of the
issues that has stalled progress in research on purely vision-based end-to-end models
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(Xiao et al., 2023), giving rise to hybrid methods combining end-to-end approaches
with modular pipelines.

The major cause of insufficient driving performance in imitation learning-based
methods stems from the problem of co-variate shift. Co-variate shift (Ross et al., 2010;
Tampuu et al., 2020) is caused by occurrences of situations (or data points) at test time
which have not been presented at the time of training, resulting in encountering a shift
in data distributions. Specifically in the context of autonomous driving, this can be
a mixture of unseen weather conditions, towns, traffic situations, and so on. While the
various methods that propose aggregating of new and vital data points (Ross et al., 2010;
Zhang and Cho, 2017; Prakash et al., 2020) into the existing data corpus have become
an essential practice in imitation learning, there still seems to be a lot of space for the
learned methods to adapt better. Besides improving data quality with data aggregation,
there are other important lines of research, one of which focuses on model parameter
initialisation or pre-training (Zhang et al., 2022; Wu et al., 2023; Juneja et al., 2023).

Efficient pre-training of a learning method (e.g. neural network) potentially implies
parameter initialisation, that may be related to the learning task of interest. This has
recently been the highlight of advances in language modelling (Minaee et al., 2024), and
very commonly used in vision based learning tasks as well (i.e. models pre-trained on
ImageNet (Deng et al., 2009) such as ResNet (He et al., 2016)). Majority of the works in
autonomous driving rely on a classification-based pre-training (Codevilla et al., 2019;
Zhang et al., 2021; Chitta et al., 2022; Xiao et al., 2023; Jia et al., 2023) and only a
handful of works investigate the impact of various other pre-training methods (Zhang
et al., 2022; Wu et al., 2023; Juneja et al., 2023).

A recent self-supervised method called self-distillation with no labels (DINO) (Caron
et al., 2021) has shown an inherent understanding of the semantic information of an im-
age, which implies it’s potential usefulness for various computer vision tasks, including
autonomous driving.

We hypothesise that pre-training a driving agent’s vision encoder with heavy guid-
ance based on labels may be indirectly or directly holding back the agent’s driving per-
formance when it comes to generalisation. Such issues could arise due to the presence of
strong image-level supervision of supervised methods potentially reducing the concept
of learning to a single task. This may also hold true in some very recent self-supervised
pre-training methods (Wu et al., 2023; Zhang et al., 2022; Juneja et al., 2023).

We empirically investigate the above hypothesis by applying DINO pre-training
(Caron et al., 2021), and comparing it with the standard supervised classification-based
pre-training approach and with a recent method, visual place recognition pre-traing for
driving agents (VPRPre) (Juneja et al., 2023). The contributions of this paper are as
follows:

1. We propose and empirically investigate DINO pre-training for imitation learning-
based autonomous driving agents.

2. Following the offline Leaderboard benchmark standard (Zhang et al., 2021; Hu
et al., 2022) on the CARLA 0.9.11 simulator, we empirically demonstrate that
the vision encoder pre-trained with downstream-task-agnostic DINO exhibits im-
proved driving performance compared to vision encoders pre-trained with super-
vised learning (ImageNet classification). Furthermore, our experimental findings
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reveal that its performance is comparable to the VPRPre encoder (Juneja et al.,
2023), which was also trained in the same CARLA environment.

2 Related work

The core concept of using neural networks for autonomous driving in research was
initially demonstrated by the ALVINN method (Pomerleau, 1988), and was revisited
during the recent connectionist renaissance with the work of (Bojarski et al., 2016).

PilotNet, based on work from (Bojarski et al., 2016), took advantage of a deeper
neural network architecture and the capability of available computing power to train
it, establishing higher performance. The use of better and well-adapted architectures
for driving has thereon been a strong line of research (e.g., (Codevilla et al., 2019;
Daniušis et al., 2021; Chitta et al., 2022; Xiao et al., 2023; Yokoyama et al., 2024)).
The most notable architecture that has been frequently used and has shown a remark-
able improvement in adapting for driving is conditional imitation learning with ResNet
(CILRS) (Codevilla et al., 2018, 2019), where each command is given a different multi-
layer perceptron branch. Another line of research that has contributed to the progress of
autonomous driving in order to reduce the effect of co-variate shift, is on how to aggre-
gate data better into the training data corpus. While the core method of data aggregation
(DAgger) (Ross et al., 2010) has brought improvement by simply aggregating correc-
tive data where an agent misbehaves, other DAgger methods (Zhang and Cho, 2017;
Prakash et al., 2020) have explored how can that be conducted more efficiently.

Various other aspects of end-to-end autonomous driving have been challenged in
order to find ways to enhance its capabilities. A milestone in this research was reached
by the method called Roach (Zhang et al., 2021) which questions the quality of demon-
strations used for training, be it human-driven or rule-based demonstration. The re-
searchers proposing Roach argue that the current form of demonstration may not be
well informed, and hence propose a reinforcement learning agent that drives based on
a birds-eye view and generates higher quality demonstrations, resulting in better data
quality for a latter agent trained over these demonstrations. The latter agent drives on
frontal camera view just as previously mentioned methods, resulting in improved per-
formance. Meanwhile, CIL++ (Xiao et al., 2023) proposes enriching the vision in the
imitation learning-based agent rather than demonstrations, with a higher field of view
provided by two additional cameras. CIL++ also extends on the original CILRS (Codev-
illa et al., 2019) method by the use of transformer (Vaswani et al., 2017) architecture to
fuse multiple views. Transfuser (Chitta et al., 2022) is another method that also uses a
transformers-inspired architecture, and does so to explore multi-modality by extending
image-based vision with LiDAR. Multi-modality for driving has also been previously
explored with different architectures (Xiao et al., 2022; Juneja et al., 2021). While most
methods use a similar architecture for driving, the following method named ThinkTwice
(Jia et al., 2023) brings emphasis onto the decoder part of the architecture. This method
modifies the decoder to be able to focus on different areas of the input image given the
current context. It makes several coarse predictions and gradually refines the offset to
each prediction.
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All previously mentioned methods have a high dependence on vision as a modality,
and in their basic forms, they utilise a vision encoder pre-trained on ImageNet (Deng
et al., 2009) in a supervised way. Rather than directly learning weights from the task
of driving, utilising a pre-trained vision encoder provides potentially more advanced
starting point for learning. However, only a handful of works in the area of end-to-
end autonomous driving have experimented with other forms of pre-training than the
standard ImageNet classification-based pre-training, hence this line of work remains
underexplored. As an example, a recent method pre-trains the vision encoder on the task
of visual place recognition at first and then incorporates it into a full-fledged architecture
for the task of driving (Juneja et al., 2023).

While VPRPre (Juneja et al., 2023) corresponds to supervised learning, some recent
methods take advantage of the self-supervised learning (Zhang et al., 2022; Wu et al.,
2023). Policy pre-training via geometric modelling (PP-Geo) (Wu et al., 2023) learns
geometric information such as pose, depth and future ego-motion in a self-supervised
manner as such information can be made available through a simulator during data
collection, while labelled information can have high costs. Another self-supervised
method called action conditioned contrastive pre-training (ACO) (Zhang et al., 2022)
explores pre-training on contrastive representation learning over YouTube videos as a
pre-training method. Being based on self-supervised learning, both PP-Geo and ACO
are heavily guided by labels which may keep these methods from learning a wider set
of features and focus only on the task at hand during pre-training.

Supervised approaches often require labelled data which can be expensive to scale.
In contrast, self-supervised learning alleviates this by learning from alternately available
meta-data rather than expensive labels, proving to be highly sample efficient.

We base our research on the recently proposed work, DINO (Caron et al., 2021),
which trains over ImageNet using a self-supervised approach without the use of man-
ual annotations. This is conducted with a multi-crop training approach applied onto a
contrastive loss, in the presence of a momentum encoder (He et al., 2020). The authors
explore and confirm the results on convolutional networks as well as on transformer
networks. This method has been able to show that learning features in the proposed
non-label guided self-supervised way can inherently enable scene layout and object
boundaries understanding without any explicit labels for the same. DINO enables pos-
sibilities of exploring in similar directions as PP-Geo, ACO and VPRPre methods, and
additionally investigating if supervised ImageNet pre-training may be a practice that
can be considered outdated.

3 Method

End-to-end autonomous driving based on imitation learning is achieved by training over
multiple sets of demonstrations. As the standard procedure followed by most imitation
based techniques, training over a fixed set of demonstrations doesn’t suffice, hence after
the first training round another set of demonstrations are aggregated (Ross et al., 2010).
This is done up-to 5 times and the results of the final iteration is reported. We aim to
pre-train the vision encoder using a non-label guided self-supervised (DINO) method
over a general task and then to train a visual end-to-end autonomous driving model
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relying on the aforementioned DAgger approach. We reveal the details of our method
in the following subsections.

3.1 DINO Pre-training

Self-supervised training uses unlabelled data and the artificial supervision signal, pro-
vided by the learning algorithm. We further utilise the DINO (Caron et al., 2021)
method which performs self-supervised learning over the ImageNet dataset consisting
of ≈ 1 million images, resulting in efficient image representations, that are useful for a
variety of down-stream tasks.

DINO uses two networks, a student and a teacher architecture, with same number
of parameters that use distillation during training. The student network gθs with param-
eters θs is trained to match the output of a teacher network gθt with parameters θt. For
an input x, both student and teacher networks inferK-dimensional probability distribu-
tions, Ps and Pt respectively. Following that, the probabilities are calculated from the
distributions using a softmax function with a modification where the sharpness of the
distributions are controlled with a temperature parameter. For the case of the student
network, the modified softmax equation can be seen in equation 1, where to calculate
the probability Ps temperature parameter τs is used to control sharpness.

Ps(x)
(i) =

exp
(
gθ(x)

(i)/τs
)∑K

k=1 exp
(
gθ(x)(k)/τs

) (1)

A similar equation is used for calculating Pt with temperature parameter τt. The
temperature control parameters are conditioned τs > 0, τt > 0.

The teacher network is co-trained along with the student network but is frozen dur-
ing an epoch. Instead, the exponential moving average of the weights is copied from
the student network to the teacher network, using the momentum encoder technique
(He et al., 2020). The update rule used is

θt ← λθt + (1− λ)θs, (2)

where λ follows a cosine schedule from 0.996 to 1 during training. With the use of a
fixed teacher network within an epoch, the learning takes place by minimising cross-
entropy w.r.t. the student network parameters θs, as in the following equation,

min
θs

H(Pt(x), Ps(x)), (3)

where H(a, b) = −a log b.
To leverage the self-supervision, DINO uses multi-crop training (Caron et al., 2020).

At first, a set of multiple views or crops V of an image are formed, in two settings. First
setting creates two views called global views xg1 and xg2, which are crops at resolution
of 224×224 that cover more than 50% of the image. The second setting creates several
views called local views which are of resolution 96 × 96 that cover less than 50% of
the image. Once the views are created, the global views are passed through the teacher
network, and the local views are passed through the student network. Then modified
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version of the loss in eq. 3 is used to adapt to a self-supervised setting in the following
way:

min
θs

∑
x∈{xg1

1 ,x
g2
2 }

∑
x′∈V,x′ ̸=x

H(Pt(x), Ps(x
′)) (4)

The neural networks gθ are composed of a backbone f and projection head h. DINO
features are represented by the outputs of backbone of student network.

3.2 Driving

For the driving agent we follow the framework set in our previous work (Juneja et al.,
2023). The decoder of the architecture is based upon CILRS (Codevilla et al., 2019)
as commonly improved in many other works (Zhang et al., 2021; Juneja et al., 2023),
where high-level command is given by the navigation system activates the correspond-
ing branch of the decoder. This high-level command may be one of several discrete
instructions, for example, follow lane, turn right, etc. To collect the initial demonstra-
tions for the base training data, we use Roach (Zhang et al., 2021), which enables au-
tomated data collection with a reinforcement learning agent (Roach agent), that drives
from bird’s eye perspective. While the agent drives, it collects images from the front
camera of the car along with the low-level driving commands executed. Once we have
the initial dataset of demonstrations, we train our agent with a pre-trained encoder in-
tegrated into it. The trained agent is then let to drive in the simulated environment with
training settings, and while this trained agent drives it is supervised by the Roach agent.
Hence, at instances where the trained agent makes mistakes i.e. disagrees with the su-
pervising Roach agent, it is corrected by the Roach agent and these instances of the
demonstrations are saved for the next iteration of DAgger. This is followed by training
over the aggregated set of corrected demonstrations and the initial dataset together. This
process of collecting aggregated data and re-training is performed for a total of 5 times,
as per the benchmark standard (Zhang et al., 2021; Hu et al., 2022).

Similar to recent works (Codevilla et al., 2019; Zhang et al., 2021; Juneja et al.,
2023), our agent’s architecture consists of a pre-trained vision encoder that encodes
the front-view RGB image, along with a measurements encoder that encodes the cur-
rent speed of the vehicle and the high-level command from the planner that is one hot
encoded. Both of the encodings are then concatenated and downsized using a join mod-
ule, formed by fully connected layers. The output of the join module is ran through
the action branches, where each branch is a module of fully connected layers and is
responsible for each high-level command. Based on the high-level command, the corre-
sponding branch’s prediction is chosen. That prediction represents the low-level driving
command. For training, non-corresponding branches are zeroed out.

To mathematically represent our agent, let X ∈ R224×224×3 be the front-view im-
age from the vehicle. Thereon, fE being the image encoder with parameters θ pre-
trained using the DINO method, u being the vector holding measurements (current
speed and high-level command), fM denoting the measurements encoder network with
parameters ξ, fJ denoting the join module with parameters ϕ that concatenates the im-
age and measurements encodings and passes through for downsizing, fA being the ac-
tion branches module with parameters ψ which calculate a low-level command for each
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high-level command, gives the representation of the network as

fA(fJ (fE (X |θ), fM (u|ξ)|ϕ)|ψ). (5)

As the network gives out low-level commands for all possible high-level commands, to
select as per the high-level command of interest, let ci be the one-hot encoded command
which is indexed with i that zeroes out the non-command branches, we reformulate the
network in statement 5 into an equation as

â(X , u|θ, ξ, ϕ, ψ) :=
n∑

i=0

cibi(X , u|θ, ξ, ϕ, ψ),. (6)

where bi corresponds to the output of i-th branch.
For simple comparability with a baseline method, we adapt to the standard loss

function used for the task of end-to-end driving (Codevilla et al., 2019; Zhang et al.,
2021), which is the sum of action loss LA and a speed prediction regularisation LS ,

LAgent(θ, ξ, ϕ, ψ) = LA(θ, ξ, ϕ, ψ) + λS · LS . (7)

Action loss LA is given by,

LA = ∥â(X , u|θ, ξ, ϕ, ψ)− a∥1 , (8)

which calculates the L1 loss between the expert action â and learned method’s predicted
action a. The speed prediction regularisation LS is given by,

LS = |̂s − s|. (9)

that calculates the difference between measured speed ŝ and predicted speed s , and is
regulated by a scalar value λs mentioned in eq. 7.

4 Experiments

4.1 Implementation details

To quantify the impact of using DINO pre-training, by following the framework of our
previous work (Juneja et al., 2023) we also implement a baseline method. The baseline
method follows the standard setting as in most works that use a convolutional neural
network, i.e. it uses a ResNet50 encoder. This encoder is pre-trained with supervised
learning over the ImageNet dataset.

The DINO pre-trained method and the baseline contain exactly the same number of
parameters, only differ in the values (or weights) they hold. While rest of the network is
randomly initialised to be trained from scratch. We initialise the measurement encoder
fM with 2 fully connected layers and set the output dimension to 128 at each layer. The
join module fJ is initialised with 3 fully connected layers and has the output dimensions
set to 512, 512 and 256 respectively. These layers are followed by the action branches
fA which consist of 3 fully connected layers with the output dimensions 256, 256 and
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2, respectively. All modules consisting of fully connected layers use a rectified linear
unit activation, except the last layers in action branches.

Both methods are trained on the same initial dataset collected with the Roach agent.
We then collect additional data on every trained model, following the formal DAgger
procedure. We iterate with DAgger for 5 times in total and collect 5 datasets in addition
to the common initial dataset, for each method. Both methods are trained for 20 epochs,
with initial learning rate of 1e − 4 and later stepped down to 1/10th of initial value
15th epoch onwards. The training is carried out out on a single Nvidia RTX 3090 GPU
with 24GB of memory fitting a batch size of 256. For both methods, we uniformly train
on smaller resolution images compared to those used in most approaches. Specifically,
we employ a resolution of 224 × 224, as opposed to the commonly used 256 × 900
resolution, following the settings of our previous work (Juneja et al., 2023) and due to
limitations in computational and time resources. As the dataset size scales over DAgger
iterations, the training time for each iteration scales from 10 to 25 hours. Additionally,
it requires at least 30 hours to evaluate every agent that has been trained, making to total
time spent over all experiments over 2 months.

4.2 Benchmark settings

We benchmark both the methods on the offline version of the Leaderboard bench-
mark (Zhang et al., 2021; Hu et al., 2022). The Leaderboard benchmark operates in
the CARLA 0.9.11 simulator (Dosovitskiy et al., 2017), which simulates city and high-
way like environments for autonomous driving scenarios. The simulator lets the traffic
(road traffic and pedestrian density) and weather conditions be controlled which brings
a strong set of possible combinations to test agents on. The Leaderboard benchmark
defines settings for training and testing, where the agent is to be trained over data from
4 different town environments with a fixed set of weather conditions, and then tested in
2 unseen environments along with unseen weather conditions.

Table 1. Weather conditions used for training, evaluation and testing.

Training weathers Evaluation weathers Testing weathers
Wet noon Wet noon Wet sunset

Clear sunset Clear sunset Soft rain sunset

Clear noon

Hard rain noon

We state the settings in Tables 1 and 2. For the evaluation task Following the bench-
mark standard, the agent is run from a given starting point to a given ending point, in
a combination of settings of town and weather. We run the benchmark with the busy
traffic setting, as done in other recent works (Zhang et al., 2021; Hu et al., 2022; Juneja
et al., 2023).
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Table 2. Towns used for training, evaluation and testing.

Training towns Evaluation towns Testing towns
Town 1 Town 1 Town 2

Town 3 Town 3 Town 5

Town 4 - train Town 4 - train Town - 4 test

routes routes routes

Town 6 Town 6

4.3 Metrics

To quantify the success rates of the compared methods we assess scores of two met-
rics, namely route completion and distance completion. Given a set of routes for every
setting, i.e. train, evaluation and testing, route completion is the average percentage of
routes completed in that setting. In the same way, distance completion represents the
percentage of distance completed to reach the goal, averaged over all routes in a set-
ting. While route completion measures the agent’s ability to reach the goal, distance
completion assesses the extent to which the agent continues to advance, even if it fails
to complete the route.

5 Results

For evaluating our proposed method according to the Leaderboard benchmark standard,
we progressively produce 6 trained agents from 5 iterations of data aggregation and 1
initial iteration, each for our proposed method and the baseline method, as mentioned
in section 4.1. Each of these trained agents are evaluated under train town-weather
conditions (i.e. in familiar settings) and test town-weather conditions (i.e. unfamiliar
settings). Since the simulation sets up the environment assets such as pedestrians and
traffic agents at random, we run our evaluations 3 times with different random seeds. We
then also report and draw conclusions from the average performances over the metrics
mentioned in the section 4.3. Furthermore, as the recent work VPRPre (Juneja et al.,
2023) aligns with the pre-training line of research and was implemented and evaluated
under identical settings, we also incorporate its results into our comparison.

Table 3. Route completion (%) of driving agents on training and new (testing) conditions. Highest
of all DAgger iterations reported.

Pre-training Train town New town
Method & weather & weather

Baseline 77.33± 4 53.20± 1

VPRPre 81.33± 4 60.25± 2

DINO (ours) 72.67± 3 62.18± 7
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Table 4. Distance completion (%) of driving agents on training and new (testing) conditions.
Highest of all DAgger iterations reported.

Pre-training Train town New town
Method & weather & weather

Baseline 89.36± 2 72.23± 6

VPRPre 91.97± 3 86.01± 0

DINO (ours) 86.04± 1 82.67± 6

We denote the best of the scores over all DAgger iterations, in Table 3 and Table
4. Under the routes completion metric in unfamiliar settings (new town & weather)
in Table 3, DINO pre-training tends to perform better than baseline pre-training and
VPRPre by ≈ 9% and ≈ 2% on average, respectively. Whereas under familiar settings
(train town & weather), while baseline pre-training overtakes the performance of DINO
pre-training, it shows signs of an over-fit as the baseline method fails to show general-
isation in unfamiliar conditions. This conjecture is also supported by VPRPre’s scores.
A similar trend can be seen in Table 4 where the distance completion metric is com-
pared. DINO pre-trained method is able to complete higher distance than the baseline
method, and comes close to VPRPre’s completed distance in unfamiliar settings. Hence
with empirically calculated results in Table 3 and Table 4, our hypothesis aligns with
the outcomes of the performed experiments.

We also compare the scores over both metrics at every iteration of data aggregation,
at every random seed and we calculate the means of the random seeds. This can be seen
in Figures 1 and 2. In comparison to the baseline, DINO pre-trained method not only
shows better generalisation it shows reduced over-fit and faster convergence.
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Fig. 1. Mean route completion (%) of evaluating agents over three seeds on the offline Leader-
board benchmark on training conditions (left) and testing conditions (right).

We further conjecture that the features learned in the encoder while pre-training in
a non-label guided self-supervised way are much richer than the features learned while
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Fig. 2. Mean distance completion (%) of evaluating agents over three seeds on the offline Leader-
board benchmark on training conditions (left) and testing conditions (right).

training in a supervised way followed by the baseline method. The classical way of
pre-training over ImageNet dataset with a classification loss may enable a kick-start
in learning the task of interest, but due to its sole focus on a single concept of image
understanding it does not converge as fast and successfully as method using DINO
pre-training, as it can be seen in Figures 1 and 2. VPRPre’s results show the ability
of going further than our method’s covered distances, yet it fails to complete as many
routes. DINO pre-training is based on use of purely general set of training data relying
on a much wider distribution, meanwhile VPRPre’s pre-training involves exposure to
training data captured in the CARLA simulator. Such exposure can be advantageous
to include into DINO’s pre-training and further improve results by increasing domain
awareness.

Many of the current methods operate with a pre-trained ResNet vision encoder
(which we choose as a baseline) and focus on exploring other parts of problem such
as the decoder (Jia et al., 2023), higher field of view with better multi-view fusion
(Xiao et al., 2023), attention enabled multi-modality (Chitta et al., 2022), and so on.
Such an encoder is heavily guided by only classification labels to incorporate image
understanding while training. Our work illustrates that dropping the reliance on such
an encoder can be quite beneficial in terms of generalisation to transfer learning task of
autonomous driving. Additionally this work highlights the need of better pre-training
while aligning with other works (Zhang et al., 2022; Wu et al., 2023; Juneja et al., 2023)
in this line of research.

6 Conclusion

We propose DINO-based pre-training of the vision encoder used for the task of learn-
ing end-to-end autonomous driving. Our experiments reveal that the suggested pre-
training is more efficient in unseen environments than the popular classification-based
pre-training. Moreover, DINO-based pre-training is conducted on an unrelated task and
its effectiveness comes close to VPRPre (Juneja et al., 2023), which relies on additional
domain awareness coming from its training data.
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