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Abstract. This article explores character encoding within NLP, emphasizing the rel-
evance of UTF-8, especially for Georgian. It examines transliteration as a solution to
enhance data processing efficiency, addressing challenges with Georgian characters in
NLP tasks. Using Python scripts and shell commands, a comprehensive experiment
compares the performance of transliteration and detransliteration. The sed and vim
commands demonstrate superior efficiency, especially in handling larger files. The re-
sults highlight the consistent advantage of transliterated texts over originals with Geor-
gian characters, with shell commands processing them approximately 18 times faster.
Emphasizing the importance of method selection based on task nature and data volume,
the article underscores the practical advantages of shell commands, the importance of
disk buffering and cache for optimizing data reading and writing processes, especially
when dealing with cached data. Overall, the study contributes valuable insights into
character encoding complexities, offering practical considerations for optimizing NLP
data processing, particularly in languages like Georgian.
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1 Introduction

Natural language processing (NLP), a prominent field within computer science
and a subset of artificial intelligence, encompasses a diverse array of tasks and
applications, including text classification, named entity recognition, sentiment
analysis, machine translation, question answering, text summarization, language
generation, document classification, information extraction, and text clustering.
These tasks are closely tied to handling extensive datasets, where digital informa-
tion is presented in various languages. UTF-8 stands out as a crucial encoding
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system for representing digital content, especially in languages like Georgian.
This encoding system facilitates comprehensive character and script processing,
using additional bytes to store Georgian characters, thereby increasing data vol-
ume in computers. Given that data volume significantly impacts storage and
processing resources in terms of time and accuracy for most NLP tasks, explor-
ing alternatives to reduce data volume becomes paramount for enhancing NLP
efficiency in problem-solving.

Transliteration emerges as a promising solution for optimizing data process-
ing and addressing NLP-related challenges across diverse languages (IBM, 1954;
Jennings, 2010). Notably, considering that all three alphabets in the Georgian
language are represented by 3 bytes in UTF-8 encoding, the role of translitera-
tion becomes particularly crucial for efficient handling of Georgian texts.

In the domain of NLP tasks, it is standard practice to work with extensive
text files, where datasets often include compilations of books, articles, websites,
and various written sources. KartuVerbs (Elizbarashvili et al., 2023), an ongoing
project, which we are developing concurrently, serves as an illustrative instance of
this practice. This project aims to construct a linked database of inflected forms
for Georgian verbs, facilitating the learning process for non-native speakers of
Georgian. In this initiative, structured textual data is employed. KartuVerbs
currently contains more than 5 million inflected forms related to more than 16
000 verbs; there are more than 80 million links in the base. To enrich the database
with additional Georgian verbs, we employ text mining techniques on diverse
Georgian textual resources, including books, articles, websites, and other written
materials. In essence, the project involves the management of exceptionally large
Georgian text files, some of which incorporate elements in Latin characters as
well. These files are characterized by sizes in the order of gigabytes.

Various shell commands are employed to process these extensive files for
various purposes. The testing procedures are performed iteratively, and each in-
stance of processing large files consumes a significant amount of time. Adding
to the complexity, Georgian characters are three bytes in size, whereas Latin
ASCII characters occupy only one byte. Consequently, the handling process is
prolonged. In an effort to expedite experiments, we are exploring methods to
convert Georgian texts into Latin ASCII characters. To achieve this, we have
developed several approaches for transliterating Georgian text into Latin. Before
diving into the details of our experiment let us shortly consider the character
encoding terminology and then pay attention to the peculiarities of UTF-8 en-
coding for Georgian language.

1.1 Character Encoding Terminology

The act of writing serves as a fundamental tool for recording and transmit-
ting speech, employing graphic signs known as glyphs (Strizver, 2011). This
study explores the evolution of character encoding systems (Jennings, 2010)
and their impact on information representation in digital systems, with a fo-
cus on the challenges posed by languages like Georgian (Tsintsadze et al., 2022;
Soselia et al., 2018).
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The terminology employed in this context is crucial for understanding the
intricate processes involved. A character, as the smallest semantic unit, can
encompass letters, numbers, punctuation marks, or mathematical symbols. A
character set, comprising abstract characters, involves two components – the
repertoire and its numerical correspondence. A coded character set further re-
fines this abstraction, assigning each character a specific numerical value or code
point. The character code point plays a pivotal role. This concept is essential
for understanding the code space – a range of numerical values associated with
character encoding. The character repertoire, an abstract set awaiting numerical
mapping, contributes to the comprehensive character encoding framework.

Mapping, a one-to-one correspondence of characters with numerical values,
is a crucial aspect of character encoding (Mackenzie, 1980). Encoding itself is
the mechanism through which code points are converted into sequences of octets
– eight-bit units in computers. The code unit, representing the length of the
record in character encoding, can vary, with 7-bit, 8-bit, and 16-bit units being
common. Some encoding schemes utilize variable lengths for specific characters.

The concept of a grapheme, the smallest unit corresponding to a phoneme,
adds a linguistic layer to the discussion. Meanwhile, glyphs, concrete visual rep-
resentations of letters, introduce the visual dimension. The variety of glyphs
associated with a single character, exemplified by different fonts, highlights the
complexity of visual representation. Lastly, ligatures, formed by combining mul-
tiple letters and signs, add an additional layer of complexity to character repre-
sentation. These ligatures convey multiple sounds within a single visual entity,
exemplifying the nuanced nature of character encoding systems.

In the intricate realm of digital communication and information processing,
the fundamental building blocks lie in the nuanced terminology surrounding
character encoding. At the core of this exploration are terms that define how
characters, the smallest semantic units, are represented and transmitted in the
digital landscape. The mechanism of character encoding, a crucial link in this
chain, is dissected to reveal its role in converting code points into sequences
of octets (eight-bit sequences, defining a standard unit of digital information
in computing) – shaping how letters and symbols find their place in memory
(Kozierok, 2017; Glossary of Unicode Terms, 2024).

Understanding these terminologies and concepts is essential for grasping the
intricacies of character encoding and its role in information processing within
digital systems. The study also touches upon the historical developments in
character encoding, from the 7-bit ASCII standard to the emergence of Unicode
and ISO/IEC 10646 (ISO/IEC, 2020) as universal standards.

2 UTF-8 Encoding for Georgian

In the contemporary digital landscape, Unicode (The Unicode Standard, 2024)
has become ubiquitous, covering a rich array of 149,813 characters1, including
1 https://www.unicode.org/versions/stats/charcountv15_1.html
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support for the Georgian language. With 294 scripts2, both modern and his-
torical, Unicode plays a vital role in facilitating communication across diverse
languages and writing systems.

As digital texts find their home in computer systems, various encodings come
into play, representing the code points of characters in binary notation. The
encoding landscape features different bit lengths, but the prevalence of 8-bit
encodings is notable for capturing the richness of the world’s scripts. Prominent
among these are ASCII-compatible (Mackenzie, 1980), variable code unit length
encodings like UTF-8, UTF-16, and GB18030.

Delving into UTF-8 encoding, it transforms a 2-byte Unicode entry for a
Georgian character into a 3-byte representation as follows.

1st Byte 2nd Byte 3rd Byte 4th Byte Nof Free Bits Max Exp. Unicode Value
0xxxxxxx 7 007F hex (127)
110xxxxx 10xxxxxx (5+6)=11 07FF hex (2047)
1110xxxx 10xxxxxx 10xxxxxx (4+6+6)=16 FFFF hex (65535)
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx (3+6+6+6)=21 10FFFF hex (1,114,111)

Taking the Georgian character "ა" (a) as an example (U+10D0), its hex-
adecimal value ”10D0” translates to the binary sequence 00010000 11010000.
When converted to UTF-8, this binary sequence aligns with the rules, produc-
ing 11100001 10000011 10010000. A practical illustration with the Georgian
letter "ა" (a) validates the encoding process. By creating a file containing only
the letter "ა" (a) and examining its binary representation, we observe a match-
ing sequence of 11100001 10000011 10010000. This reaffirms that the UTF-8
encoding accurately captures the essence of character representations, providing
a standardized and efficient means of handling diverse scripts in digital environ-
ments.

In the encoding system, especially UTF-8, plays a crucial role in accurately
representing and storing Georgian characters in digital environments. The unique
characteristics of the Georgian script, with its 2-byte Unicode entries, require
careful consideration in encoding to ensure efficient storage and seamless digital
communication.

The UTF-8 encoding, with its ability to handle a wide range of characters and
scripts, proves indispensable for Georgian. Despite the additional byte needed
for the representation of Georgian characters, the system provides a standard-
ized and reliable method for storing and transmitting textual information. The
example of the Georgian letter "ა" (a, U+10D0) demonstrates the effective con-
version from its Unicode value to the corresponding UTF-8 binary sequence,
showcasing the encoding system’s role in preserving the integrity of Georgian
characters.

As the digital landscape continues to evolve, and global communication be-
comes increasingly diverse, a robust and flexible encoding system like UTF-8
ensures the accurate and efficient representation of Georgian language and cul-
ture within the broader context of digital communication.
2 https://www.worldswritingsystems.org/
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Each letter within the three Georgian alphabets occupies 3 bytes in memory
when encoded in UTF-8 (Unicode, 2023).

2.1 Georgian Character Size Challenge

All Georgian characters are transformed in 3-byte sequences when Using UTF-8
encoding. Multi-byte characters generally require more resources than one-byte
characters. In terms of storage, each multi-byte character typically requires more
than one byte to represent, compared to one-byte characters. This means they
occupy more storage space. Regarding processing, the CPU must determine the
encoding of each character to interpret it correctly. For multi-byte characters,
this involves checking multiple bytes, which can be more computationally inten-
sive. In terms of memory, as an application processes more multi-byte charac-
ters, it may need to allocate additional memory for temporary data structures or
intermediate results. Caching can further consume memory, particularly when
dealing with large amounts of multi-byte text.

When working with Georgian texts, it’s common to encounter a mix of Geor-
gian letters along with Latin or other foreign characters. This situation involves
handling both single-byte and multi-byte characters simultaneously.

If Georgian characters weree ncoded as a single byte, working with text would
be less computationally intensive. To accomplish this, specific transliteration
rules (Mammadzade, 2018) would need to be adapted for both Georgian and
Latin characters. The State Language Department of Georgia has established
guidelines for transliterating the Georgian language’s sound system into Latin
characters3. However, this rule does not support bijective transliteration, mean-
ing that once Georgian text is transliterated into Latin, it cannot be accurately
converted back to Georgian on a one-to-one basis. Along with this, if the original
Georgian text contains Latin characters, those characters will be entirely lost in
the twice-transliterated text.

3 Methodology

Our approach to addressing the issue of Georgian character size involves iso-
lating the non-Georgian parts of the text and transliterating only the Georgian
portions of the text while leaving the rest unchanged. To accomplish this, we
use a custom transliteration table along with a marker system. Modern Georgian
has 33 letters, so our transliteration table maps these characters to both lower-
case and uppercase basic Latin characters. Before applying this table, we first
employ markers to identify patterns in the text that contain basic Latin char-
acters, which are part of our transliteration table. We assume that the marker
character does not appear in the text. This process ensures that non-Georgian
characters in the original text remain unchanged, while transliteration and de-
transliteration are applied only to the unmarked segments. Detransliteration is
3 https://enadep.gov.ge/uploads/Guidelines_for_Latin_Transliteration_of_
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technically a form of transliteration. It is the reverse process of transliteration.
While transliteration converts text from one script to another, detranslitera-
tion converts the transliterated text back to its original script. By mapping
each Georgian character to a unique basic Latin equivalent and vice versa, we
can achieve a bijective conversion process. Unlike Oriental languages such as
Japanese, Korean, Chinese, and Taiwanese, which employ variable-length en-
coding schemes (Spencer, 2001), Georgian uses a fixed-length encoding scheme,
making the proposed conversion approach both feasible and effective.

When applying our method to a large volume of mixed characters, it’s es-
sential to ensure that the tools used for transliteration and detransliteration are
both time-efficient and consume as few computational resources as possible. To
select the optimal solution, our objective is to develop various conversion meth-
ods whether character-based, line-based, or buffer-based, test these processes,
and compare the performance of different techniques across a range of file sizes.

For the character by character transliteration process, a script or program
can be created using a variety of programming languages; we opted for Python in
our case. For line by line transliteration, we used the shell command sed, which
is well-suited for processing text line by line. It’s a stream editor for searching,
replacing, and manipulating text and sed can be used to perform transliteration
by using regular expressions and appropriate substitution patterns. For buffer-
based transliteration, we selected the shell command vim, as Vim is a text editor
capable of handling text in buffers. Vim’s ex commands offer a powerful way to
execute various text manipulations, including transliteration. Although the tr
shell command is specifically designed for character transliteration, we can’t use
it because it works with single-byte characters and when dealing with multi-byte
characters, like Georgian characters, it can lead to unexpected results.

To confirm that the original version is identical to the transliterated and
subsequently detransliterated version, we use the GNU implementation of the
cmp command, which compares two files byte by byte. Alternatively, the diff
and comm commands can also be used. They compare files line by line and identify
specific changes.

4 Experimental Setup

For the experiments, we utilized files of varying sizes: 10 MB, 100 MB, 1 GB,
and 5 GB. These files predominantly consist of Georgian characters, occasionally
interspersed with fragments of Latin characters. The text was extracted from a
news portal, ensuring a representation of literate language. Subsequently, we
performed transliteration on these files, converting the Georgian characters into
their Latin equivalents as per our transliteration table, and enclosed these Latin
segments within given markers. As a result, for each file, we obtained a translit-
erated version with sizes approximately reduced to one third.

In the experiment we selected ASCII control characters as markers. Specif-
ically, we tested the NULL character, the file separator (FS) and the record
separator (RS). These characters were chosen for their minimal size, being only
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1 byte each, and their invisibility, ensuring they do not affect the visual rep-
resentation of the text. However, it’s important to note that handling NULL
characters may vary slightly across different platforms and programming lan-
guages. In our scripts, alternative markers whether custom control characters or
special sequences, visible or invisible can also be used, depending on which is
most appropriate for a given application.

To transliterate Georgian text to basic Latin characters on a character by
character basis, we developed the ka2lat.py Python script, which uses the cus-
tom ka2lat translation table to map Georgian characters to Latin characters. For
detransliteration, we created lat2kat.py, which employs the custom lat2kat
translation table. Both scripts require two parameters: File to specify the file
path containing text and and Marker to define symbols used for marking the
corresponding Latin segments. All the scripts produced so far, including Python
scripts are publicly and freely available online4.

To transliterate and detransliterate Georgian text characters on a line by line
basis, we used the sed command with the following syntax:

### Define variables
export Marker='\x0' # Marker=$'\036' # Marker=$'\034'
export Lat='abgdevzTiklmnopJrstufqRySCcZwWxjh'
export Ka='აბგდევზთიკლმნოპჟრსტუფქღყშჩცძწჭხჯჰ'

### Transliteration
sed -e "s/[a-zTJRSCZW]*[a-zTJRSCZW]/${Marker}&${Marker}/g"

-e "y/$Ka/$Lat/" File > File_tr

### Detransliteration
sed "s/\(${Marker}[^${Marker}]*[^${Marker}]${Marker}\)\1*/\n&\n /g

;G;s/^/ /" File_tr | sed -e '/^ /y/'${Lat}/${Ka}'/;/./{H;d;}'
-e'x;s/\n \{0,1\}//g' -e "s/${Marker}//g" >File_restored

In this process, the file File contains a mix of Georgian and non-Georgian
characters. The transliterated version is saved in File_tr and the restored ver-
sion is saved in File_restored.

For buffer-based transliteration using vim, we used the following syntax:

### Define variables
export Marker=$'\036' # Marker=$'\034'

### Transliteration
vim -c ":%s/[a-zTJRSCZW*[a-zTJRSCZW]/$Marker&$Marker/g"

-c '%!sed "y/აბგდევზთიკლმნოპჟრსტუფქღყშჩცძწჭხჯჰ/abgdevzTiklm
nopJrstufqRySCcZwWxjh/"' -c':wq' File_tr

### Detransliteration
4 https://github.com/aelizbarashvili/Ka2Lat2Ka
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vim -S <(echo "source tr.vim") -c "%s/$Marker\zs[^$Marker]*
$Marker\|\zs[a-zTJRSCZW]/\=Translate(submatch(0))/g"
-c "%s/$Marker//g" -c 'wq' File_restored

### The Translate function is defined in the tr.vim file:
" translate.vim
function! Translate(char)

let charmap = {'a': 'ა', 'b': 'ბ', 'g': 'გ', 'd': 'დ', 'e': 'ე',
'v': 'ვ', 'z': 'ზ', 'T': 'თ', 'i': 'ი', 'k': 'კ', 'l': 'ლ', 'm':
'მ', 'n': 'ნ', 'o': 'ო', 'p': 'პ', 'J': 'ჟ', 'r': 'რ', 's': 'ს',

't': 'ტ', 'u': 'უ', 'f': 'ფ', 'q': 'ქ', 'R': 'ღ', 'y': 'ყ', 'S':
'შ', 'C': 'ჩ', 'c': 'ც', 'Z': 'ძ', 'w': 'წ', 'W': 'ჭ', 'x': 'ხ',

'j': 'ჯ', 'h': 'ჰ'}
return get(charmap, a:char, a:char)

endfunction

These scripts have been successfully tested for transliteration and detranslit-
eration on our sample files of varying sizes: 10 MB, 100 MB, 1 GB, and 5 GB. In
each case, the restored files were compared to the originals using the cmp com-
mand, and all were found to be 100% identical. This confirms the accuracy of the
transliteration and restoration process, serving as the best quality evaluation of
these transformations. However, as file sizes increased, processing time became
a limiting factor.

The experiment considered the importance of disk buffering and cache in
optimizing data reading and writing. Measurements were performed on cached
data of varying file sizes.

Overall, the experiment aimed to compare different approaches to translit-
eration and detranslation, considering practicality and performance.

5 Performance Measurements and Results

During the experiment we collected detailed resource usage information across
files of various sizes – 10 MB, 100 MB, 1 GB, and 5 GB – using Python scripts,
Sed, and Vim. We monitored these processes using the shell’s time command
with the -v option, which measures various performance metrics and provides
a comprehensive report, including execution time, CPU utilization and memory
usage.

Table 1 presents the processing times for transliteration and detransliter-
ation across different file sizes using three different approaches: character by
character processing with Python scripts (ka2lat.py and lat2ka.py), line by
line processing with the sed command, and buffer-based processing with the vim
command.

Charts in Figure 1 depict the data presented in the Table 1, unveiling that,
in terms of processing time, the vim command achieves the highest performance
in transliteration, while the sed command excels in detransliteration.
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Table 1. Processing time for transliteration and detransliteration.

Python Sed Vim

File Size (MB) 10 100 1024 5120 10 100 1024 5120 10 100 1024 5120
Tr. time (sec) 9 108 1167 5448 5.2 51.3 537 2683 1 10 105 568
Detr. time (sec) 3.4 39.5 523 1954 0.41 4 39.5 200 43 571 1140 35845
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Fig. 1. The transliteration and detransliteration processing’s details

Table 2 displays memory usage for transliteration and detransliteration across
different file sizes using the mentioned three different approaches: character
by character processing, line by line processing, and buffer-based processing. It
shows that Python scripts and the sed commands maintain approximately con-
stant memory usage across all file sizes for both transliteration and detransliter-
ation. For Python scripts, several factors contribute to this consistency: Reading
in Chunks: The script processes the file character by character rather than load-
ing the entire file into memory. This approach reduces the memory footprint,
as only a small portion of the file is held in memory at any given time; Inter-
nal Buffers: Python uses internal buffering mechanisms for file I/O operations.
This can lead to consistent memory usage patterns, as the buffering strategy
does not scale linearly with the size of the file; Efficient I/O: Reading one char-
acter at a time with f.read(1) ensures that only a small amount of data is
held in memory. This efficient handling of file I/O operations contributes to the
stable memory usage; Data Structure: The ka2lat and lat2ka dictionaries are
relatively small data structures compared to the size of the input file. Their size
does not significantly impact the overall memory usage. For sed the maximum
RAM usage during execution did not exceed 3 MB, regardless of file size, due to:
Streaming Data Processing: sed processes data in a streaming fashion. Instead
of loading the entire file into memory, sed reads the input file line by line or
in small chunks, applies the specified operations, and writes the result to the
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output file. This means that sed only needs to keep a small portion of the file
in memory at any given time, regardless of the total file size.

In contrast, vim shows a significant increase in memory usage as file sizes
grow, with sharper rises for larger files. This behavior is due to: In-Memory
Editing: vim loads the entire file into memory for editing. This behavior contrasts
with sed and Python’s streaming approach, where only portions of the file are
processed at a time. For large files, this can lead to significant memory usage;
Buffering and Undo History: vim maintains an undo history and buffer for the
entire file, which adds to memory usage. This feature allows you to undo and
redo changes, but it also increases memory consumption, especially for large
files.

Table 2. Maximum memory usage for transliteration and detransliteration.

Python Sed Vim

File Size (MB) 10 100 1024 5120 10 100 1024 5120 10 100 1024 5120
Tr. RAM (MB) 10 10 11 11 3 3 3 3 44 352 3432 16507
Detr. RAM (MB) 10 11 11 11 3 3 3 3 34 250 2409 11460

Regarding CPU time, it’s noteworthy that CPU usage was consistently high,
nearly 99% on one core, across all file sizes in Python, sed, and vim, despite the
presence of multiple cores. This is due to how these tools are designed to oper-
ate and utilize system resources. Both sed and vim operate in a single-threaded
mode for their core processing tasks. This means that, even if the server has
multiple cores, these tools do not take advantage of parallel processing for the
main operations. They perform their tasks on one core and do not distribute
the workload across multiple cores. sed and the vim do not have built-in par-
allelism for processing large files. They handle text operations sequentially on
one core. The Python script also lacks explicit parallelization, so it runs on a
single core by default. The operations being performed (substitution, searching,
transliteration) are CPU-bound tasks. They involve intensive computation that
is executed on a single thread.

Main key findings are the following:

1. Python scripts:
– Performance and Scalability: The Python scripts (ka2lat.py for translit-

eration and lat2ka.py for detransliteration) showed consistent execu-
tion times across various file sizes. The processing time increased linearly
with file size (10 MB, 100 MB, 1 GB, 5 GB), indicating potential effi-
ciency challenges when handling larger datasets.

– CPU Utilization: Across all file sizes, the Python scripts utilized nearly
99% of one CPU core. This high CPU usage is typical of the Python’s
single-threaded execution, which does not leverage multi-core processing.
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– Memory Usage: The maximum memory usage remained constant at
around 11 MB, irrespective of the file size. This efficient memory man-
agement can be attributed to Python’s internal buffering and chunked
file processing, which minimizes the memory footprint by reading and
processing the file character by character rather than loading the entire
file into memory.

2. Sed command:
– Performance Efficiency: The sed command, known for its efficiency in

stream editing, exhibited competitive performance, especially in detranslit-
eration tasks. It was significantly faster than Python for both translit-
eration and detransliteration.

– CPU Utilization: Similar to Python, sed also utilized nearly all available
CPU time on a single core. However, its stream processing model allowed
it to handle large files efficiently.

– Memory Usage: The memory usage for sed remained impressively low,
not exceeding 3 MB, regardless of file size. This is due to sed’s ability to
process data in a streaming fashion, handling only small portions of the
file in memory at any time. This allows it to handle large files efficiently
without requiring a proportional amount of RAM.

3. Vim text editor:
– Performance: Vim’s buffer-based processing showed the fastest process-

ing times for transliteration, outperforming both Python and sed. How-
ever, it exhibited the slowest performance in detransliteration, especially
for large files. This discrepancy is due to the computational expense of
handling many substitutions, conditional checks, and context switches
during detransliteration.

– CPU Utilization: Like the other tools, Vim used nearly 99% of one CPU
core across all file sizes.

– Memory Usage: Unlike Python and sed, Vim’s memory usage increased
significantly with file size. For transliteration, memory consumption rose
from 44 MB for 10 MB file to 16.5 GB for 5 GB file. For detransliteration,
memory usage ranged from 34 MB for 10 MB file to 11.5 GB for 5 GB
file. This high memory consumption is due to Vim’s in-memory editing
model. As an interactive text editor it loads the entire file into memory
for editing, and maintains a buffer and undo history.

It is important to note that our data was cached during the experiments.
Caching mechanisms play a crucial role in optimizing performance, resource
utilization, and scalability in data processing experiments. Their significance
becomes more pronounced as the size of the data and the complexity of the
computations increase.

Comparison and Implications:

– The performance measurements underscored the significance of choosing an
appropriate method based on the task’s nature and data volume.
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– Vim’s outstanding performance, attributed to its buffering mechanism, em-
phasized its suitability for handling substantial transliteration workloads,
particularly when memory usage is not a constraint.

– The experiment highlighted the practical advantages of shell commands,
such as sed, in terms of processing speed, especially in scenarios involving
extensive data processing when detransliterating. These commands offer a
lightweight and efficient solution for tasks that do not require the overhead
of a full editor or more complex scripting languages.

– Despite Python’s ease of use and flexibility, its longer execution time when
processing text character by character compared to sed suggests that it
may not be the best choice for extremely large files. However, Python’s
capabilities for more complex operations make it a strong candidate for tasks
that go beyond simple text processing.

– The results underscore the importance of understanding the trade-offs be-
tween memory usage, processing speed, and the complexity of tasks when
selecting tools for text processing and transliteration.

Table 3 displays the time required, in seconds, to execute various standard
shell commands commonly employed in text processing. It includes scenarios
involving chained commands with pipes, as text processing in the shell typically
involves a series of commands.

The presentation showcases the performance for two distinct files: one con-
taining Georgian texts with occasional Latin character fragments and the other
with its transliterated counterpart, identified as ’f’ and ’f_tr’ in the table 3.
The command column specifies ’f[_tr],’ with brackets denoting optional parts
of the command line semantics. This indicates that the command is initially
executed for the file ’f’ and subsequently for the file ’f_tr’.

Additionally, it’s important to note that ’>/dev/null’ is appended for all
commands. This redirection to /dev/null ensures that the command’s output
is not displayed on the terminal or saved to a file. This practice proves beneficial
when the output itself may consume significant time or resources to process,
allowing us to focus exclusively on measuring the command’s execution time
without interference from output handling.
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Table 3. The experiment results

File size (MB) 10 100 1024 5120

Command ( >/dev/null) Time (seconds) factor

cat f[_tr] 0.007 1.40 0.029 2.07 0.176 2.47 0.940 3.26
0.005 0.014 0.071 0.288

sort f[_tr] 0.199 10.47 3.534 19.5 18.113 14.53 69.555 12.66
0.019 0.181 1.246 5.492

wc -l f[_tr] 0.009 1.8 0.037 2.1 0.246 2.5 1.079 2.6
0.005 0.018 0.100 0.418

uniq f[_tr] 0.039 2.1 0.255 4 2.434 2.5 12.344 2.6
0.019 0.108 0.964 4.713

grep -v ‘[ა-ჰ]’ f 0.015 3.8 0.054 10.8 0.449 90 2.165 433
grep -v ‘[a-z]’ f_tr 0.004 0.005 0.005 0.005
sed ‘/[ა-ჰ]/d’ f 0.018 1.5 0.084 1.6 0.761 2.4 3.831 2.6
sed ‘/[a-z]/d’ f_tr 0.012 0.052 0.321 1.497
awk -F" " '{print $NF}'
f[_tr]

0.038 1.3 0.264 1.5 2.422 1.4 12.163 1.5
0.029 0.175 1.682 8.378

tr -d [0-9] < f[_tr] 0.029 1.8 0.153 2.3 1.411 2.5 7.115 2.6
0.016 0.067 0.564 2.723

paste f[_tr] f[_tr] 0.075 2.3 0.639 2.5 6.241 2.6 31.007 2.6
0.032 0.246 2.356 11.946

cat f[_tr] | sort | uniq 0.216 5.7 3.887 11.6 53.079 15.6 289.736 13.2
0.038 0.336 3.907 21.963

cat f[_tr] | sort | uniq |
grep -v '[ა-ლ]' | sed -n
'/^[მ-პ]/p' | tr -s " "

0.231 3.8 3.947 10.1 55.416 13.9 290.439 18.7
0.050 0.372 3.991 21.920

The demonstration is conducted across four different file sizes: 10 MB, 100
MB, 1 GB, and 5 GB. Furthermore, the green cell in the table displays a factor
indicating the relative speed improvement when executing commands using the
transliterated version of the file compared to the original content containing
Georgian texts.

Considering the frequent execution of compiled commands in text processing
workflows, achieving results approximately 18 times faster on transliterated files
significantly expedites the overall process.

Another compelling indication of the efficacy of working with translated ver-
sions of large Georgian texts, as opposed to the texts containing Georgian letters
and symbols, is evident in the comparison of translation/detransliteration times.
Transliteration (working with Georgian text) using the sed command takes ap-
proximately 45 minutes, whereas detransliteration (working with Latin text) is
completed in approximately 3.5 minutes, marking a notable 13-fold increase in
speed. It’s important to note that this process was accomplished using a single
command, sed. When introducing additional commands and complexity, this
enhanced performance is expected to scale even further.
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The measurements were conducted on a pristine installation of Ubuntu 22.04
server minimal, devoid of any additional local or network services. No extraneous
processes were running that could influence disk I/O. The presented table 3
reflects averaged data, ensuring that measurement times are reasonably accurate.

The technical specifications of the server are detailed in the Table 4:

Table 4. The technical specifications of the server

Processor Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, 32 cores, model: 85
RAM 48 GB
Disk 100 GiB, with 76% free space

6 Conclusion

This study extensively explores character encoding intricacies, emphasizing its
crucial role in natural language processing (NLP) tasks and addressing challenges
specific to the Georgian language. The effectiveness of UTF-8 encoding in rep-
resenting and storing Georgian characters is unveiled, exemplified by the Kartu-
Verbs project’s real-world application in constructing a comprehensive Georgian
verb database. This underscores the necessity for efficient handling of extensive
text files in NLP applications.

Performance measurements for standard shell commands emphasize efficiency
gains when working with translated versions of large Georgian texts. The sub-
stantial speed increase, especially in scenarios involving extensive data process-
ing, underscores the practical advantages of shell commands in text processing
workflows.

Our method to transliterate Georgian texts proves efficient because it only
processes the Georgian portions of the text, not other segments, reducing compu-
tational overhead. The use of a bijective mapping ensures that transliteration and
detransliteration are both accurate and reversible. The flexible marker system
provides a robust approach for handling Georgian text. Overall, Our approach
provides a solid foundation for effectively transliterating and detransliterating
for Georgian texts that can be adapted to other languages also that uses multi-
bytes characters.

Various tools were compared, including a Python script, the sed command,
and the vim text editor. This assessment involved examining the execution times
across files of differing sizes, ranging from 10 MB to 5 GB (10 MB, 100 MB, 1 GB,
5 GB). The notable finding was the consistent superiority of Vim for translitera-
tion, particularly evident as file sizes increased, though it also exhibits significant
memory usage growth as file size increases. Processing the data in buffered mode
with vim proved to be approximately 5 times faster compared to using only the
sed command, which represents the second result. For detransliteration, sed



Enhancing Georgian Text Processing: Transliteration Techniques 429

demonstrated superior performance in terms of execution time and memory us-
age compared to both the Python script and vim, processing conversions from
Latin to Georgian about 10 times faster than the Python script, which represents
the second result.

The experiment yielded valuable insights into the efficiency of handling single-
byte texts compared to multi-byte texts. The superior performance advantage of
using various shell commands for processing transliterated Georgian texts, par-
ticularly evident in the processing of larger files, becomes apparent – it processes
transliterated texts approximately 20 times faster than texts with Georgian char-
acters. The discussion on disk buffering and cache underscored their pivotal role
in optimizing data processing, with potential implications for real-world applica-
tions. Overall, the experiment aimed to provide a comprehensive comparison of
transliteration methods, considering both practicality and performance, thereby
contributing valuable data for further exploration and optimization.

In the evolving digital landscape, where global communication diversifies,
character encoding role, particularly in languages like Georgian, becomes in-
creasingly crucial. The insights from this study contribute to optimizing data
processing in NLP tasks, providing valuable considerations for researchers and
practitioners. The study’s focus on character encoding complexities and practical
applications of transliteration methods deepens our understanding of NLP effi-
ciency, emphasizing the importance of thoughtful method selection to enhance
overall effectiveness, especially in languages with distinctive encoding require-
ments.
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