
Baltic J. Modern Computing, Vol. 13 (2025), No. 1, 67-74

https://doi.org/10.22364/bjmc.2025.13.1.04

Implicit Parameter Scope Handling in Programming

Languages

Mikus VANAGS

Logics Research Centre, Sterstu street 7-6, Riga, LV 1004, Latvia

mikus.vanags@logicsresearchcentre.com

ORCID 0009-0001-4542-7097

Abstract: This paper introduces a novel abstract syntax approach designed to simplify the scope

and implicit parameter management in nested anonymous methods across programming languages.

The proposed innovations include: 1) non-capturing function - a new method for declaring

anonymous methods that does not capture implicit parameters, and 2) shorthand higher-order

function call - a novel technique for invoking methods that captures implicit parameters within the

scope of the function call, thereby generating a new anonymous function to be passed to the calling

function. These advancements enable a more concise syntax for anonymous methods, enhancing

code readability. Furthermore, the approach to implicit parameter handling in nested anonymous

methods improves the conceptual understanding of boundaries and interactions between complex

nested anonymous functions. Collectively, these innovations pave the way for more intuitive,

maintainable, and expressive anonymous methods in programming languages.

Keywords: programming languages, implicit parameter, anonymous methods, parameter scope.

1. Implicit parameters

Scala language has feature named ‘contextual parameters’ aka ‘implicit parameters’

(WEB, a) which is something between global variables and default arguments rather than

feature completely enclosed inside the method body declaration as are method parameters.

Kotlin® supports keyword ‘it’ (WEB, b) – it can be used in lambda expressions as single

parameter with constant name which might affect code readability. Q language supports

up to 3 implicit parameters with special names x, y and z (WEB, c) which also is a

limitation of the expressiveness and might affect code readability. Swift® has shorthand

argument names (WEB, d) which allows to refer to lambda parameter using index of the

parameter - that is similar idea to Clojure shorthand lambda syntax (WEB, e) - to use

indexes instead of names which also might affect code readability. Accessing parameters

by indexes or using constant names to access the parameters is ambiguous in nested

lambda expressions, therefore is needed better, more abstract and more expressive model

of implicit parameters (Vanags and Cevere, 2018).

The idea of implicit parameters redefine how parameters are declared in programming,

moving the parameter declaration from the method's signature to the body of the method.

In this approach, all unknown identifiers within the method body are treated as parameters

that have been implicitly declared. These implicit parameters are handled as expressions,

https://doi.org/10.22364/bjmc.2025.13.1.04
mailto:mikus.vanags@logicsresearchcentre.com

68 Vanags

and the first occurrence of an implicit parameter expression leads to its addition to the list

of method parameters (Vanags et al., 2016). In the following pseudocode example

parameter ‘x’ is implicitly defined:

function {return x+6;}

Following pseudocode demonstrates equivalent example declaring parameter

explicitly (the usual way how it is done in programming languages):

function(x) {return x+6;}

Implicit parameters make method declarations more concise, thereby improving code

readability, particularly for lambda expressions (relatively small and simple code

expressions), making this approach potentially applicable across various programming

languages. Comparison of possible anonymous method syntax improvements related to

implicit parameters are shown in Figure 1 demonstrating how implicit parameters

facilitate removing unnecessary keywords and symbols from lambda syntax making the

lambda syntax very concise.

Figure 1. Anonymous method syntax improvements using implicit parameters.

Implicit parameters are placed in the method's parameter list in the same order as they

are identified within the method body. The parameter list is part of the method's signature,

and there are occasions when altering the order of these parameters is desirable. Implicit

parameter order can be changed using Grace~ operator (Vanags, 2016). The prefix form

of the Grace~ operator shifts a parameter one position closer to the beginning of the

method's parameter list:

function {return y - ~x;}

 Implicit Parameter Scope Handling in Programming Languages 69

Conversely, the postfix form of the Grace~ operator shifts a parameter by one position

towards the end of the method's parameter list:

function {return y~ - x;}

Both Grace~ operator usage examples are functionally equivalent to the following

example without using implicit parameters:

function(x, y) {return y - x;}

Currently only KatLang programming language (WEB, f) implements implicit

parameter feature.

2. Implicit Parameters in Nested Functions

In the following ECMAScript aka JavaScript (WEB, g) example (using explicitly declared

parameters) parameters a and b belong to the function assigned to the variable f. In the

case of the anonymous function assigned to the function variable g, the parameter c is

associated with the nested anonymous function.

var f = function(a, b) { return a(b) }

var g = function() {

 return f(function(c) {return c+1}, 2)

}

g()

Functionally equivalent example using implicitly declared parameters is as follows:

f = function { return a(b) }

g = function {

 return f(function {return c+1}, 2)

}

g()

More concise syntax can be achieved by removing all the unnecessary keywords:

f = { a(b) }

g = {

 f({ c+1 }, 2)

}

g

In a nested functions environment, each implicit parameter is captured by the most

nested function within which the implicit parameter is encountered for the first time. The

outer anonymous function does not contain any parameters because implicit parameter c

is first encountered and thus captured within the nested anonymous function.

It is important to note that an implicit parameter will invariably be captured by some

function. If not captured by any inner function, the last opportunity for capture is by the

most outer function. Consequently, the most outer function is always defined with {}

brackets, but since these brackets are a constant feature of the outermost function, they

can be omitted and inferred from the context of the code's use.

Previous example can be improved by removing unnecessary brackets as follows:

70 Vanags

f = a(b)

g = f({ c+1 }, 2)

g

When all the unnecessary symbols and keywords are removed, it is a little easier to

notice which anonymous function captures which implicit parameters. The result is

KatLang example. KatLang allows for the omission of the outermost function's brackets

{} because it interprets line endings as possible ending of an expression. While such a

practice may not align with the syntax of all programming languages, it illustrates the

potential for making code more concise by eliminating unnecessary constants, symbols,

or keywords.

3. Grace~ operator role in changing the scope of implicit

parameters

Implicit parameters are limited to the scope in which they are defined, but Grace~ operator

can be used to change the scope of an implicit parameter. It means that Grace~ operator

prefix form can move implicit parameters to outer scope as demonstrated in following

example:

f = function{

 return function {

 return ~a+1

 }

}

The same example without unnecessary keywords:

f = {

 {~a + 1}

}

Parameter a is tried to move one position before the beginning of the parameters list

and it is interpreted as moving the parameter to the end of the outer function parameters

list.

Functionally equivalent JavaScript example using explicitly declared parameters are

as follows:

var f = function(a) {

 return function() {

 return a + 1

 }

}

The postfix form of Grace~ operator does not have capability to change the scope of

implicit parameter, therefore prefix and postfix forms of the Grace~ operator is

asymmetric.

Symmetry, simplicity and code readability are the reasons why Grace~ operator is

better to be limited to work only in the scope of single function and do not allow to move

 Implicit Parameter Scope Handling in Programming Languages 71

the parameter outside the visibility scope of the function. A better solution is needed to

control the scope of implicit parameters.

4. Non-capturing function – parameter less function with

implicit parameters in the function body

For the sake of simplicity, the function which can contain parameters is called a

'parametrized' function. In the world of implicit parameters, the only way for the function

to be parameter less function is not to have any implicit parameter in the body of the

function. But that is a serious limitation for the language expressiveness. The limitation

can be overcome by creating non-capturing function - a new kind of function which is

defined between brackets '(' and ')' and such function does not own or capture any implicit

parameter. The implicit parameters are owned by the closest parametrized function and

the parametrized function is defined between brackets '{' and '}'. The most outer function

is parametrized by default, because some function needs to capture implicit parameters if

they are not captured in the inner functions. Therefore, in the definition of the most outer

function bracket { } usage is optional.

Figure 2 explains how JavaScript syntax can be improved demonstrating the usage of

parameter less function defined withing brackets ().

Figure 2. Deduction of parameter less function syntax with explanations.

Function f=(a+1) contains outer function (which is parametrized by default) and inner

function defined with brackets (). Usually in programming languages it means that the

function can be executed and then the resulting function (returned from the initial call) can

be executed. The execution syntax is following: f(1)(). To simplify syntax for such cases

when the function is called, the execution can be performed to all the returned (inner)

parameter less functions until no more executions are possible. It means unwrapping the

nested (inner) parameter less function which results in getting rid of the unnecessary

72 Vanags

brackets (scopes). Such behavior might not be the best in all possible situations, but for

processing math expressions, it makes sense and works well in programming language

KatLang.

5. Shorthand higher order function call

If the function body can be declared in two different ways – using brackets () or {} as

shown in the previous chapter, then the same principle can be applied to method calls

which means implementing the method call using brackets {} instead of (). It means the

method call will be specialized to pass lambda expression as parameter to the calling

method. Figure 3 shows how to convert explicit parameters example to implicit parameters

example, then how to make syntax more concise by removing unnecessary keywords and

brackets, and then how to improve syntax by using brackets {} in the method call. This

approach simplifies the syntax for shorthand higher-order function calls by allowing a

lambda expression to be passed to a function that expects another function as a parameter.

Figure 3. Deduction of shorthand higher order function call syntax with explanations.

Bracket {} usage in method call expressions is quite simple – the argument of the

method call is a function which body is defined between brackets {}. More interesting

now seems bracket () usage in method calls. When brackets () are used for the method

call, it can be interpreted as passing parameter less function to the method call. Any

parameter less function, including nested parameter less functions, can be unwrapped.

Usually programming languages allow passing the final unwrapped expressions of the

parameter less function to the method call – it is because in other programming languages

brackets () are used to manage the operation priorities without creating a new lambda

expression. Parameter less function is like a wrapping layer to the unwrapped expressions

 Implicit Parameter Scope Handling in Programming Languages 73

and structurally it is similar to the scenario when the parametrized function is passed to

the method call.

Parameter less function unwrapping takes processor time, and it might not be the best

option for all the programming languages, but nonetheless it is an interesting concept

worth considering when designing future programming languages.

6. Summary

This paper introduces two key innovations to improve the handling of implicit parameters

in programming languages: the non-capturing function and the shorthand higher-order

function call.

The non-capturing function - defined with parentheses () - allows for the inclusion of

implicit parameters without capturing them within the function. Instead, implicit

parameters are bound to the nearest outer parametrized function, defined with curly

brackets {}. This distinction reshapes traditional approaches to function scopes and

parameter management, shifting the way developers can think about function definition,

parameter binding, and scope visibility.

The Grace~ operator provides a method for reordering implicit parameters within the

method's parameter list, but its prefix and postfix forms are asymmetric in controlling

parameter scope. While the operator is effective in reordering parameters, it is less ideal

for managing the parameter scope in nested functions. The non-capturing function offers

a more robust solution to this challenge by separating the logic of the function from

parameter ownership.

Additionally, the shorthand higher-order function call simplifies function invocation

by allowing the omission of traditional function call brackets () when passing a lambda

expression as an argument. This concise syntax enhances readability and reduces

unnecessary symbols, particularly in functional programming contexts.

Both innovations have been implemented in the abstract programming language for

math calculations - KatLang, which supports implicit parameters and the Grace~ operator.

KatLang challenges traditional paradigms of function declaration and usage, encouraging

developers to rethink the relationship between a function’s logic and its parameter

interface. These contributions represent a conceptual shift that enhances readability,

clarity, and expressiveness in programming language design.

References

Vanags, M., Justs, J., Romanovskis, D. (2016). Implicit parameters and implicit arguments in

programming languages. US Patent 9361071.

Vanags M. (2016). Grace~ operator for changing order and scope of implicit parameters. US Patent

9417850.

Vanags M., Cevere R. (2018). The Perfect Lambda Syntax. Baltic J. Modern Computing, Vol. 6

(2018), No. 1, 13-30 Retrieved from https://doi.org/10.22364/bjmc.2018.6.1.02

WEB (a). Tour of Scala, Contextual parameters, aka implicit parameters. Retrieved May 5, 2024,

from https://docs.scala-lang.org/tour/implicit-parameters.html

WEB (b). Kotlin, Higher-order functions and lambdas (2023). Retrieved May 5, 2024, from:

https://kotlinlang.org/docs/lambdas.html#it-implicit-name-of-a-single-parameter

WEB (c). Kdb+ and q documentation, Function notation. Kx Systems, Inc. (2023). Retrieved May

5, 2024, from https://code.kx.com/q/basics/function-notation/

https://doi.org/10.22364/bjmc.2018.6.1.02
https://docs.scala-lang.org/tour/implicit-parameters.html
https://kotlinlang.org/docs/lambdas.html#it-implicit-name-of-a-single-parameter
https://code.kx.com/q/basics/function-notation/

74 Vanags

WEB (d). The Swift Programming Language (5.10), Shorthand Argument Names (2023). Apple Inc.

Retrieved May 5, 2024, from https://docs.swift.org/swift-book/documentation/the-swift-

programming-language/closures/#Shorthand-Argument-Names

WEB (e). Clojure, Reader, Hickey R. (2022). Retrieved May 5, 2024, from

https://clojure.org/reference/reader

WEB (f) KatLang. Logics Research Centre (2022). Retrieved May 5, 2024, from http://katlang.org/

WEB (g) ECMAScript® 2023 language specification (2023). Retrieved May 5, 2024, from

https://ecma-international.org/publications-and-standards/standards/ecma-262/

Received May 11, 2024, revised September 22, 2024, accepted January 13, 2025

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/closures/#Shorthand-Argument-Names
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/closures/#Shorthand-Argument-Names
https://clojure.org/reference/reader
http://katlang.org/
https://ecma-international.org/publications-and-standards/standards/ecma-262/

