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Abstract. This is a survey paper in which we review the state-of-the-art Next-Best-View plan-
ners with the focus on their application in solving an autonomous 3D scanning task. According
to market reports, the 3D scanning market will continue to grow in response to the increasing de-
mand for augmented and virtual reality solutions. Taking into account that the number of skilled
3D artists is limited and their labor is highly paid, an alternative way of creating high qual-
ity 3D models is 3D scanning existing objects. In many cases, 3D scanning is the only way to
get photorealistic textures and high-definition models. Automated 3D scanning can be used as a
way to preserve art, document changes in the environment, create detailed models of consumer
products. Six next-best-view planners were compared using ROS in the Gazebo simulation en-
vironment. The MA-SCVP machine learning method achieved on average 93.1% coverage, that
is 5.9% higher than ScanRL, 36% higher than SEE, and 1% higher than volumetric information
gain methods. Maximum coverage with the MA-SCVP method was achieved after 12.2 views on
average, versus 20 views for the volumetric information gain methods.
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1 Introduction

It is estimated that the 3D scanning market will reach a billion dollars by 2024 as dis-
cussed in Kari (2022), the main reason being the applications of AR and VR mostly in
the marketing field. According to Boland (2020), photorealistic models create a sense
of craving in consumers, improve conversion, and increase session length. In return an
improvement in this metrics results in higher income and growth in customer satisfac-
tion. In many AR/VR applications, photorealistic 3D models improve immersion and
blend better in the scene. Such models can be created either by skilled 3D artist or by
means of automated 3D scanning of real-world objects. So far only large companies
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such as IKEA have had the ability to digitize their products and create 3D assets of
their inventories.

By using appropriate 3D scanning techniques, it is possible to democratize the cre-
ation of 3D models. In our experience, structured light scanning yields the best results,
by controlling lighting, polarization and camera focus, high detail models with HDR
textures can be achieved. The main hurdle is an intelligent way to plan the path with
the intent of reducing the necessary number of view points. Structured light scanning
creates high-resolution textured 3D models, but each new scan takes up to 10 seconds,
depending on the number of patterns being projected. Most of this time is to make sure
the system is static, dampen the vibrations, and adjust camera lenses focal length and
aperture. With this in mind, we evaluated state-of-the-art NBV planners with the focus
on minimal view coverage.

2 Related work

Depending on the target use for the NBV planner different metrics are used to evalu-
ate planner’s performance. As mentioned earlier for a system that uses structured light
3D scanning, most important metric is number of views needed to achieve threshold
reconstruction quality.

2.1 Next-best view planner comparison techniques

Authors are aware of the last analysis of NBV planning methods carried out by Scott
et al. (2003), in which the comparison metrics have been defined to evaluate different
approaches. The evaluation criteria of this publication were reviewed as a basis for our
literature analysis.

Many of the state-of-the-art NBV planners are iterations and improvements of pre-
vious methods, as the MA-SCVP method introduced in Pan et al. (2023) is an im-
provement of the SCVP method introduced in Pan et al. (2022) that additionally uses
PC-NBV by Zeng et al. (2020) neural network to define the best view. NBV-Net 4-5
neural network architecture introduced in Vasquez-Gomez et al. (2021) (the numbers in
the name stand for: 4 convolutional layers and 5 fully connected layers), is based on the
previous paper Mendoza et al. (2019) NBV-Net network architecture that contained 3
convolutional layers and 5 fully connected layers. The authors also tested other NBV-
Net configuration, like NBV-Net 3-3, NBV-Net 3-5, NBV-Net 4-3, and NBV-Net 5-4,
with the conclusion that the NBV-Net 4-5 network achieves the best results. NBV-Net
was the first 3D convolutional network architecture applied to solving 3D reconstruc-
tion. Multiple further solutions use a similar network architecture and use NBV-Net as
ground truth.

An alternative to deep machine learning (ML) based methods are measurement di-
rect methods (SEE Border et al. (2018) and SEE+ Border and Gammell (2022)), (PC-
NBV Zeng et al. (2020)) - all using point cloud data to define the region of interest and
the next best view.

After literature analysis, the most prominent NBV planners have been selected for
further evaluation: MA-SCVP Pan et al. (2023), SEE Border and Gammell (2022),
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ScanRL Peralta et al. (2020) and volumetric information gain methods such as AE
(Average Entropy), RSE (Rear Side Entropy), RSV (Rear Side Voxel), OA (Occlusion
Aware) and PC (Proximity Count) by Delmerico et al. (2018) and UV (Unobserved
Voxel) by Vasquez-Gomez et al. (2014) and volumetric information gain method de-
fined in Kriegel et al. (2015).

2.2 3D model datasets

The ABC dataset introduced in Koch et al. (2018) contains more than 1 million CAD
models, downloaded from the Onshape3 platform. Shapenet Chang et al. (2015) dataset
contains three millions of CAD models, 220 000 of which are categorized into 3135
classes. Thingi10K Zhou and Jacobson (2016) dataset contains 10 000 models intended
for 3D printing. In general, large-scale datasets are used for training and testing ML
algorithms. For 3D reconstruction tasks, smaller datasets with textured models created
by 3D scanning are more common.

The models of the bunny, introduced in Turk and Levoy (1994), the dragon by Cur-
less and Levoy (1996) and the armadillo and the Buddha by Krishnamurthy and Levoy
(1996) are available on the Stanford University computer graphics laboratory website.4

The 20 models introduced in Rodolà et al. (2013) are available on the Munich Techni-
cal University (TUM) computer vision group website.5 The 80 detailed models created
by means of structured light 3D scanning by Jensen et al. (2014) are available on the
Image Analysis and Computer Graphics at the Technical University of Denmark (DTU)
website.6 Several models are available on the MIT Computer Science and Artificial In-
telligence laboratory website.7 The House3K dataset used in Peralta et al. (2020), which
contains 3000 building models with textures, is available on the GitHub repository.8 The
Linemod dataset9 used in Hinterstoißer et al. (2012) and the HomebrewedDB dataset10

introduced in Kaskman et al. (2019) are available on the TUM websites.

3 Methodology

In order to evaluate different NBV planners, the Gazebo simulation environment was
chosen, with foresight to later use NBV planners with ROS. Primarily due to authors
familiarity with ROS as well as the capabilities to use both Gazebo simulation envi-
ronment and real-world robotic systems. As different NBV planners were implemented
in different environments, an approach only involving the view coordinates was used.
By using only coordinates, multiple different environments can be utilized and the re-
sults are not software and setting dependent. The positions were transformed to be used

3 https://www.onshape.com/
4 http://graphics.stanford.edu/data/3Dscanrep/
5 https://cvg.cit.tum.de/data/datasets/clutter
6 https://roboimagedata.compute.dtu.dk/
7 https://people.csail.mit.edu/tmertens/textransfer/data/
8 https://github.com/darylperalta/Houses3K
9 https://campar.in.tum.de/Main/StefanHinterstoisser

10 https://campar.in.tum.de/personal/ilic/homebreweddb/
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with Gazebo (the coordinates X, Y, Z were scaled and the rotations were converted to
quaternions). The evaluation pipeline is presented in Figure 1.

The coverage percentage is calculated as a similarity between the ground-truth
model and the resulting point cloud. Our approach differs from previously used method-
ologies as we use more comprehensive 3D test model dataset as well, compare multiple
different approach performance combined with the focus on highest coverage percent-
age achievable in least views possible.

Algorithm 1 Similarity calculation between pointclouds
Input cloudA, cloudB, threshold
Output cloudA similarity to cloudB
tree = open3d.geometry.KDTreeF lann(cloudA)
num_outlier = 0; num_valid = 0
for pt in cloudB.points do

dist = nearestDistance(tree, pt)
if dist < threshold then

num_valid = num_valid+ 1
else

num_outlier = num_outlier + 1

result = num_valid/(num_outlier + num_valid)

For the experiments, the threshold value has been set to 0.005 meters or 0.5 mm.
CloudB is the point cloud of ground-truth created from the .ply model.

Fig. 1: NBV planner evaluation methodology
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To evaluate the performance of the NBV planner, a testing dataset has been assem-
bled. The dataset contains 9 models: bunny and dragon from the Stanford University
dataset, can and cat from the LineMod dataset, and 5 models from the HomeBrewDB
dataset: mug, minion, dog, stegosaur, and triceratops. Set composition was selected to
include the most common test models as well as models with complicated geometries
and occlusions. The models have been scaled down, and the geometry has been simpli-
fied. To improve reconstruction and perception, bright textures have been applied to the
models. From the 3D models, ground truth point clouds have been created that contain
on average 52 000 points. Simplified geometry models are not larger in size than 5 MB
for the .ply mesh models and not larger than 12 MB for the .dae Gazebo models.

Fig. 2: Dataset of 3D models used for evaluation

4 Results

On average, with the same number of views, the MA-SCVP NBV planner achieved
9.2% higher coverage than the volumetric information gain methods. Until 7 views, the
volumetric information gain metrics UV (Unobserved Voxel), AE (Average Entropy),
or other volumetric information gain methods can achieve higher coverage than MA-
SCVP, possibly due to MA-SCVP selecting views to optimize the local path rather than
purely maximizing information gain. After about 7 views, MA-SCVP achieves higher
coverage than the other evaluated methods.

MA-SCVP created on average a coverage set of 12.2 views, while ScanRL, SEE,
and volumetric information gain methods were limited to 20 views. In 8 of the 9 mod-
els, MA-SCVP reached the highest overall coverage (with the exception of the bunny
model, bunny the percentage of coverage shown in Figure 4). The bunny model was
the only model where a larger number of views than those defined by MA-SCVP was
beneficial and resulted in higher maximum coverage.

Measurement-direct approach SEE achieved on average a 36% lower maximum
coverage than MA-SCVP, but gradually improved the quality of the model, where each
next view increased the coverage. With volumetric information gain methods, in some
cases, among the 20 views, some of the views were redundant and did not improve
coverage.

Examples of the percentage of coverage after 5, 10 views and maximum achieved
for the 2 selected models and some of the methods are presented in Table 1.

Table 1:
Coverage after 5, 10 views and maximum achieved.
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Model Metric MA-SCVP ScanRL SEE UV VG AE RSE OA PC RSV

Cat C5 0.874 0.483 0.449 0.813 0.828 0.872 0.734 0.813 0.648 0.699
Cat C10 0.932 0.754 0.492 0.915 0.926 0.907 0.854 0.915 0.872 0.832
Cat Max 0.957 0.866 0.619 0.942 0.945 0.925 0.943 0.942 0.934 0.938

Bunny C5 0.615 0.514 0.539 0.787 0.742 0.760 0.673 0.760 0.639 0.543
Bunny C10 0.852 0.774 0.628 0.843 0.828 0.835 0.813 0.825 0.818 0.814
Bunny Max 0.862 0.870 0.675 0.873 0.895 0.877 0.881 0.883 0.891 0.844

Dragon R5 0.721 0.512 0.493 0.709 0.584 0.735 0.667 0.709 0.606 0.667
Dragon R10 0.857 0.703 0.535 0.782 0.789 0.769 0.812 0.782 0.751 0.788
Dragon Max 0.876 0.832 0.651 0.849 0.877 0.843 0.874 0.849 0.878 0.873

Triceratops R5 0.892 0.558 0.519 0.847 0.838 0.841 0.743 0.847 0.821 0.743
Triceratops R10 0.948 0.816 0.576 0.902 0.882 0.919 0.864 0.902 0.893 0.881
Triceratops Max 0.973 0.900 0.597 0.952 0.956 0.946 0.956 0.952 0.953 0.953

On most of the models, coverage similar to the cat model was achieved, where
MA-SCVP achieved after 5 views the highest overall coverage or within 1-2% from
the maximum coverage achieved by volumetric information gain methods. It is worth
mentioning that since MA-SCVP defines a minimal coverage view set, the local path
is optimized. Because of this limitation, the coverage in the first views might be lower
than that achieved by information gain approaches.

Fig. 3: Coverage for the cat model.

Th bunny model was the only model tested in which all volumetric information gain
metrics as well as ScanRL achieved a higher maximum coverage than MA-SCVP. For
the bunny model, MA-SCVP defined a set of 11 views, ScanRL achieved the maximum
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coverage in 17 views, and the volumetric information gain methods were limited to
20 views, but did not improve more than 1% in views 17 to 20. This points to the
limitation of the smallest view set defined by MA-SCVP and the value of using more
views to improve coverage. The SEE in the bunny model was tested up to 50 views and
achieved 74.2% maximum coverage with an average 0.9% improvement per view.

Fig. 4: Coverage for the bunny model.

5 Further research

As future work we define several possible directions.
Combining several NBV planning approaches to create hybrid NBV planners. The

ML based MA-SCVP method is limited to a 32 view dataset. Combining its fast cov-
erage in the initial views with a measurement-direct approach like SEE to define the
next-best view based on the gaps in the resulting point cloud can lead to a higher over-
all coverage percentage.

ML model training on a larger dataset with models of higher geometric complexity.
Most of the datasets do not include models with a high levels of occlusions and geomet-
ric complexity. Training ML models on a larger and more complex dataset can result in
more robust NBV planners.

Neural networks with larger state and action spaces. Fixed view space is a limiting
factor for neural network-based methods, as well as 32x32x32 voxel representation is
not suitable for some objects, for example, plant leaves. Using higher-resolution state
and action spaces might yield better results for more complex geometries.

Testing NBV planners on real-world objects with sensor sensor noise and position-
ing uncertainty.
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6 Conclusions

In our experiments, the ML based MA-SCVP method achieved higher coverage with
fewer views than other reviewed methods. By combining robotic platforms and ML
NBV path planning, it is possible to optimize automated 3D asset requisition and achieve
high resolution models in less amount of views.

This study emphasizes the importance of understanding the differences between
NBV planners when applied to 3D reconstruction. Future research should explore hy-
brid methods, combine the strengths of the models discussed, and develop more adap-
tive strategies that can better handle a wider range of geometries.
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