
Baltic J. Modern Computing, Vol. 13 (2025), No. 1, pp. 177–199
https://doi.org/10.22364/bjmc.2025.13.1.10

Performance-Driven and Cost-Efficient
Convergence of Cloud and HPC: Evaluating

MinIO and LustreFS

Hrachya ASTSATRYAN1, Hovhannes BAGHDASARYAN1,2, Ruben ABAGYAN3,
Hovakim GRABSKI3,4, Siranuysh GRABSKA3,4

1 Institute for Informatics and Automation Problems of NAS RA, Yerevan, Armenia
2 Department of Informatics and Computer Engineering, International Scientific-Educational

Center of NAS RA, Yerevan, Armenia
3 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San

Diego, San Diego, CA, USA
4 L.A. Orbeli Institute of Physiology of NAS RA, Yerevan, Armenia

baghdasaryan@ieee.org, abagyan@health.ucsd.edu, hgrabski@health.ucsd.edu,

sgrabska@health.ucsd.edu, hrach@sci.am

ORCID 0000-0001-8872-6620, ORCID 0009-0008-3242-5464, ORCID 0000-0001-9309-2976,
ORCID 0000-0001-6115-9339, ORCID 0000-0001-9291-3357

Abstract. Integrating cloud technologies into high-performance computing (HPC) systems ad-
dresses the rapidly increasing demand for data growth in HPC. The HPC over cloud solutions
may simplify complicated workflow, enhance scalability, and improve the end-user experience.
Reliable file systems in HPC over cloud environments may efficiently manage vast amounts of
data. This study evaluates various approaches to distributed storage and cloud object storage per-
formance. A cost-effectiveness and performance analysis prove that cloud-integrated HPC can
offer a scalable alternative to traditional storage solutions.

Keywords: cloud, distributed file system, object storage, Lustre, S3 API

1 Introduction and background

Parallel file systems are fundamental components of high-performance computational
(HPC) infrastructure, providing the necessary storage, organization, sharing, protec-
tion, and performance capabilities to support the complex computational workflows and
data-intensive applications prevalent in the HPC domain (Lockwood et al., 2018). The
parallel file systems effectiveness in HPC encompasses scalability, cost-effectiveness,
reliability, performance, and manageability. The end of Dennard scaling and Moore’s

178 Astsatryan et al.

Law has made it challenging to scale HPC systems within a given performance range,
especially in large systems such as supercomputers (Milojicic et al., 2021). Many ven-
dors have deployed scalable cloud object stores to accommodate the continued growth
of unstructured data and simplify access to HPC.

Object stores offer faster resource access and cost reduction than traditional file sys-
tems. The object stores scale performance and capacity efficiently without hierarchical
structures, ensuring seamless growth with demand. Object stores’ ”key-value” data for-
mat enables robust data protection through replication and erasure coding, enhancing
durability and reliability. Object stores like Amazon S3 and Google Cloud Storage are
widely used for their efficient resource access and scalability without hierarchical struc-
tures (Palankar et al., 2008). Leveraging a ”key-value” data format, the stores ensure
data protection through replication and erasure coding, bolstering durability and relia-
bility. Amazon S3 is a highly reliable and widely used object storage service that offers
seamless scalability and comprehensive data protection features. Numerous cloud stor-
age providers offer a RESTful gateway broadly compatible with the S3 interface.

Many libraries face limitations in harnessing the full potential of object storage due
to their dependence on traditional file system interfaces like POSIX (Portable Operat-
ing System Interface). The POSIX programming API defines a set of operations for
interacting with files, directories, and entire file systems. This integration challenge of-
ten results in storage sprawl, as object stores are frequently deployed alongside file
systems, resulting in ad hoc data access and management across both systems. Stor-
age sprawl causes numerous problems, including over-provisioning, reduced backup
efficiency, and cost inflation (Smith, 2016). Managing data complexity across multiple
storage systems increases administrative overhead and operational costs. Additionally,
the need for redundant storage resources and backup infrastructure further escalates
operational expenses. In addition, the coexistence of object storage and traditional file
systems often leads to redundant provisioning of storage resources to accommodate
both systems’ requirements, resulting in wasted resources and increased costs.

The convergence of cloud and HPC storage architectures can effectively address
modern storage system challenges to seamlessly integrate object and file storage, con-
solidating data onto a unified platform (Lofstead et al., 2016). It seeks to enhance
storage capabilities while preserving established semantics and interfaces, ensuring
consistent and efficient data access across diverse computing environments. Various
approaches exist to realize this convergence. One involves integrating S3-compatible
gateways with parallel file systems at the storage level (Gadban and Kunkel, 2021). An-
other approach extends distributed file systems by combining them with cloud object
storage (Luettgau et al., 2023). Additionally, efforts enhance the performance of exist-
ing cloud-native distributed file systems (Jeong et al., 2019). These strategies bridge the
gap between traditional file systems and object storage in converged cloud and HPC
environments.

The article studies several cloud and HPC systems’ converging concepts and effi-
cient solutions, focusing on cost-effectiveness and performance metrics. Specifically,
we evaluate MinIO and LustreFS (Schwan et al., 2003) against S3 object storage to
ascertain their suitability in achieving this convergence. The structure of this paper is
as follows. Section 2 presents state-of-the-art and related work. The methodology and

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 179

experimental environment are described in Section 3. Section 4 contains a performance
analysis results. Finally, the last Section 6 provides the conclusion of our study.

2 Related work

In recent years, numerous publications have delved into the convergence of cloud ob-
ject storage and high-performance file systems, including those by Chen, Li and Ke
(2017), Lackschewitz et al. (2022), Huang et al. (2015), Durner et al. (2023), and Liu
et al. (2018). These studies shed light on the strengths and limitations of various ap-
proaches. Jones et al. (2017) evaluated the high-performance parallel file system Lustre
and Amazon’s S3, highlighting S3’s suitability for sharing vast amounts of data over the
Internet. The results show that with proper implementation of parallel I/O, full network
bandwidth performance can be attained, ranging from 10 gigabits/s over a 10 GigE S3
connection to 0.35 terabits/s using Lustre on a 1200 port 10 GigE switch. Lustre excels
in processing large datasets locally. However, their study did not assess the performance
of a file system compatible with the S3 API for HPC environments. In Gadban et al.
(2020) study, they examined the RESTful API protocol via HTTP for high-performance
file storage, contrasting it with the HPC-native communication protocol Message Pass-
ing Interface (MPI) in object storage operations. The authors showed that REST often
delivers comparable latency and throughput to MPI implementations. Still, their study
did not assess its suitability, efficiency, and performance in handling large file accesses.
Notably, their research did not explicitly explore the performance implications of inte-
grating a cloud storage system like S3 within an HPC environment.

Several studies propose implementations aimed at achieving such convergence, such
as MarFS (Inman et al., 2017; Chen, Grider and Montoya, 2017) and ArkFS (Cho et al.,
2023) scalable distributed file systems designed to be near-POSIX compliant, operat-
ing on top of object storage systems. They support S3-compatible platforms with the
aid of suitable API translation modules. However, they do not fully adhere to POSIX
standards. Many lack support for essential POSIX features like symlinks, hardlinks, or
file attributes (chmod), leading to suboptimal performance for random writes (Lillaney
et al., 2019).

According to the market survey, supporting POSIX completeness is extremely im-
portant for HPC, as most datacenters need to support legacy applications that rely on
POSIX semantics (Inman et al., 2017). Therefore, there is the most significant interest
in convergence with POSIX-complete file systems. This study addresses the limitation
by examining well-established parallel file systems and object storage solutions sup-
porting the S3 API. Among the parallel file systems commonly employed in HPC en-
vironments, three widely recognized Free and open-source software systems — Lustre,
BeeGFS (formerly known as FhGFS), and DAOS (Distributed Asynchronous Object
Storage) were studied. These systems frequently appear in submissions to the IO500
ranking, a semi-annual performance evaluation of HPC storage systems. IO500 evalu-
ates the storage system performance based on bandwidth and metadata performance.

The studies (Lackschewitz et al., 2022; Manubens et al., 2022; Hennecke, 2020)
show that DAOS outperforms other parallel file systems in most metrics. At the time of

180 Astsatryan et al.

Table 1. The number of DAOS and Lustre file systems in ISC24 List

ISC24 List Lustre DAOS

TOP-25 1 9

TOP-50 7 16

TOP-100 23 20

writing, DAOS-based systems occupy nine positions in the top 25 in IO500 Research
ISC24 list5. Table 1 shows the number of installations with DAOS and Lustre.

DAOS requires large NVMe (non-volatile memory express) and NVRAM (non-
volatile random access memory) devices, making it unsuitable for all environments. In
the near future, the relatively high prices of these storage devices will limit the use of
DAOS in datacenters and especially in research. With this in mind, the most promising
avenues lie in the convergence of cloud storage systems with Lustre (Gadban, 2022).
It is worth mentioning that Ceph offers greater redundancy than Lustre, but Lustre is
faster in an HPC environment. However, Lustre can be problematic due to its single
point of failure.

Table 2. Storage Solution Comparison Matrix

LustreFS BeeGFS JuiceFS Ceph MinIO DAOS

File storage
support

yes yes yes yes no no

Block storage
support

no no no yes no no

S3 support no no yes yes yes no

POSIX
compliance

high high high acceptable low relaxed

Scalability high high low medium low high

High avail-
ability

yes yes yes yes yes yes

License GPLv2 GPLv2 Apache
License 2.0

LGPLv3 AGPLv3 BSD-2

Comparative characteristics based on preliminary research and available documen-
tation for all considered file systems are presented in Table 2.

5 IO500 ISC24 Research List - https://io500.org/list/isc24/io500

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 181

3 Methodology

The methodology section provides an overview of the parallel distributed file systems
under examination, describes the benchmarking tools employed, and explains the ap-
proach used for cost-effectiveness analysis.

3.1 Overview of parallel distributed file systems

A selection was made of Lustre in combination with the MinIO object store to explore
further the convergence approach of integrating S3-compatible gateways with parallel
file systems at the storage level. The lightweight architecture of MinIO and its full
S3 compatibility make it an optimal candidate for deployment in gateway mode or as
a complement to Lustre in hybrid storage environments. As an alternative approach,
JuiceFS was considered due to its combination of POSIX compliance and native S3
compatibility. Additionally, Ceph was evaluated as a highly versatile storage system
that is effectively used for data redundancy and fault tolerance.

This section presents the overview of Ceph, Lustre, MinIO, and JuiceFS parallel
distributed file systems.

3.1.1 Ceph Ceph is a distributed object storage and file system with excellent perfor-
mance, reliability, and scalability (Weil, Brandt, Miller, Long and Maltzahn, 2006).

Block
Storage Clients

RADOS

A/S

LIBRADOS Ceph FS

RADOS GWRDB

Object
Storage Clients

File-based
Storage Clients

OSD

MDS

OSD

MON

OSD

MDS

OSD

MON

OSDOSD

MON

OSD

Fig. 1. Ceph architecture.

It operates on a cluster of commodity hardware, utilizing a scalable architecture
for seamless expansion as storage requirements grow. Ceph organizes data into objects
stored within logical pools. Each is managed independently to optimize performance
and reliability. In a Ceph cluster, nodes fulfill three different roles:

182 Astsatryan et al.

– MDS (Metadata Server) - act as a metadata service required for the Ceph.
– OSD (Object Storage Daemon) - serves as storage resource provider responding

to client requests and ensuring data synchronization with other OSD nodes.
– MON (Monitor) - responsible for monitoring the overall status of the entire Ceph

cluster.

One of the critical components of Ceph is its RADOS (Reliable Autonomic Dis-
tributed Object Store) architecture, which ensures data redundancy and fault tolerance
by replicating objects across multiple nodes in the cluster (Van der Ster and Wiebalck,
2014). This redundancy enhances data durability and enables high availability and re-
silience to node failures. In addition to its object storage capabilities, Ceph provides a
POSIX-compliant distributed file system called CephFS. CephFS allows users to mount
Ceph storage as a traditional file system, enabling seamless integration with existing
applications and workflows that rely on standard file access protocols. The LibRados
programming interface serves as a basic framework for various client interfaces.

As shown in Fig. 1, Ceph’s object storage is exposed through the RADOS gateway,
the block storage through the rados block device, and the file system is exposed through
Ceph FS. All of these components rely on Librados interfaces for their operation. Ulti-
mately, the data is stored as objects in the RADOS system. Ceph uses the CRUSH (i.e.,
Controlled Replication Under Scalable Hashing) algorithm (Weil, Brandt, Miller and
Maltzahn, 2006) to ensure that data is distributed evenly across the cluster, allowing for
easy retrieval by all cluster nodes.

Overall, Ceph could be considered an ideal cloud solution for HPC if there was no
performance degradation when scaling the system (Gudu et al., 2014). There are very
few studies (Jeong et al., 2019; Zhang et al., 2019; Li et al., 2020) on improving Ceph
performance, although this could be a promising direction in the convergence of cloud
and HPC.

3.1.2 Lustre Lustre has been one of supercomputers’ most popular parallel dis-
tributed file systems for many years, offering scalability, high throughput, and low la-
tency. Lustre’s architecture was carefully designed to serve as a scalable storage plat-
form for computer networks, using a distributed, object-based storage approach. A Lus-
tre consists of three key components:

– Metadata Servers (MDS) - host metadata targets (MDT) per Lustre file system
and manage namespace metadata such as file names, access permissions, etc.

– Object Storage Servers (OSS) - store file types on object storage target (OST)
devices. A Lustre file system is the total capacity of its OSTs.

– Clients - access and use the data. Lustre offers a unified namespace for all files and
enables standard POSIX semantics.

The typical architecture of Lustre is shown in Fig. 2.
In most scenarios, the MDT, OST, and client components are distributed across dif-

ferent nodes within a Lustre file system and connected over a network. The Lustre Net-
work (LNet) offers compatibility with various network connection options, including
InfiniBand connections, Omni-Path, or TCP/IP over Ethernet.

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 183

OSS 1

OSS 2

 High Performance Data Network
(Omni-Path, InfiniBand)

Object Storage Servers
(OSSs)

Lustre Clients
(1 ‒ 100 000+)

Management Server (MGS)
Metadata Server (MDS)

Management Target (MGT)
Metadata Target (MDT)

Co-located MGS and MDS share storage

Fig. 2. Lustre architecture.

Lustre provides a coherent, global POSIX-compliant namespace for large-scale
computer infrastructure, including the world’s largest supercomputer platforms. It can
support hundreds of petabytes of data storage and tens of terabytes per second in si-
multaneous, aggregate throughput (Panda et al., 2022). Such convergence would be
promising if the S3 gateway adapts to HPC (Gadban and Kunkel, 2021).

3.1.3 MinIO and JuiceFS MinIO is an object storage solution compatible with the
Amazon Web Services S3 API and encompasses the full range of S3 core functionality.
MinIO achieves horizontal scalability using a concept known as Server Pools. Server
pools integrate technology components, each representing a self-contained group of
nodes with computing, networking, and storage resources. In addition, MinIO provides
extensive functionality for working with metadata, which is valuable from the end user’s
perspective (Spiga et al., 2022). Given the S3 compliance, running MinIO in the gate-
way mode in front of Lustre is one of the convergence scenarios.

Another approach is to implement high-performance POSIX-compliant distributed
file systems. One such solution is JuiceFS, an open-source distributed file system com-
patible with POSIX, Hadoop distributed file system (HDFS) and S3 protocols. Full
POSIX compatibility allows almost all kinds of object storage, such as Ceph or MinIO.
JuiceFS offers data management, analysis, archiving, and backup APIs (Luettgau et al.,
2023). Therefore, JuiceFS integration with MinIO is interesting for further exploration.

JuiceFS is compatible with POSIX, HDFS, and S3 protocols, making it highly ver-
satile and suitable for various use cases. The JuiceFS architecture (Fig. 3) consists of
three key components: the metadata engine, the object storage backend, and the client
layer. The metadata engine implemented with Redis manages file system metadata such
as file hierarchy, permissions, and attributes. The speed and efficiency of Redis make it
the ideal choice for this purpose, ensuring that metadata operations do not remain a bot-
tleneck even in large-scale deployments. The object storage backend is where JuiceFS

184 Astsatryan et al.

stores data blocks. JuiceFS, supporting various backends, is flexible in choosing suit-
able storage solutions. The client layer provides access to the file system through a
POSIX-compliant interface. JuiceFS also supports additional protocols, such as NFS
and SMB, further improving compatibility.

Metadata
(redis)

JuiceFS Client Core

S3 GatewayFUSE

File-based
Storage Clients

Object
Storage Clients

S3 MinIO CEPH

Object Storage

HTTPS

Fig. 3. JuiceFS Architecture.

The integration of JuiceFS and MinIO creates a robust storage solution that com-
bines the scalability and cost-effectiveness of object storage of MinIO with the ease of
use and performance of JuiceFS. JuiceFS is an interface layer in this architecture that
connects applications to the underlying MinIO storage. The Redis manages the meta-
data, while MinIO stores and splits data into blocks. The integration is beneficial for
optimizing performance through client-side caching. JuiceFS clients cache frequently
accessed files locally, significantly reducing latency and increasing throughput for read-
intensive workloads. This feature is particularly beneficial in machine learning applica-
tions, where large data sets are frequently accessed repeatedly (Luettgau et al., 2023).
MinIO’s horizontal scalability also allows for handling increasing amounts of data with-
out sacrificing performance. This scalability is achieved by dynamically adding nodes
to server pools.

JuiceFS’s full POSIX compliance makes it an excellent choice for organizations
moving from legacy systems to modern, cloud-native storage. POSIX compliance en-
sures that applications requiring a traditional hierarchical file system can run seamlessly
on JuiceFS without significant changes. This compatibility also extends to MinIO, as
JuiceFS translates traditional file operations into object storage operations, enabling ef-
ficient use of MinIO as a backend. This design allows organizations to leverage the
cost benefits of object storage while maintaining the ease of use of traditional file sys-
tems. Additionally, the modular nature of this architecture allows the metadata and data
storage components to scale independently, enabling optimal resource utilization.

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 185

3.2 Benchmarking tools

COSBench (Cloud Object Storage Benchmark) and MDtest are used to evaluate the
performance of storage systems. Each tool offers unique capabilities and focuses on
different aspects of storage performance assessment (Zheng et al., 2012).

3.2.1 COSBench COSBench tool developed by Intel evaluates the performance of
cloud object storage services, such as Amazon S3, OpenStack Swift, and Ceph RA-
DOS Gateway. The tool simulates workloads and measures key performance metrics,
including throughput, bandwidth, latency, and scalability. COSBench evaluates cloud
object storage’s read and write performance as a system compatible with the S3 proto-
col. The COSBench interface includes three core operations (create, get, and delete an
object) for identifying bottlenecks and measuring capacity.

3.2.2 MDtest (IOR) The IOR, developed by Lawrence Livermore National Labo-
ratory, generates various I/O patterns to evaluate the throughput and latency of storage
systems, such as sequential and random reads/writes. IOR supports configurable param-
eters such as block or file sizes or several processes to tailor the benchmark to specific
use cases. It provides detailed performance metrics, including bandwidth, IOPS (I/O op-
erations per second), and access latencies. MDtest is part of the IOR suite that evaluates
metadata performance in parallel file systems. It focuses on measuring the performance
of metadata operations such as file creation, deletion, and listing. MDtest allows users
to generate metadata workloads, including small and large file counts, directory hierar-
chies, and metadata access patterns. It provides detailed metrics on metadata through-
put, latency, and scalability.

3.3 Experimental environment

All experiments were conducted utilizing the CloudLab (Duplyakin et al., 2019), a
collaborative initiative involving five US universities and US Ignite, offering robust
testbeds tailored for the computer science research community.

Servers within the University of Wisconsin cluster with the c220g2 configuration
were selected for the experiments. The configuration details are provided in Table 3.

Table 3. Node configuration of c220g2

CPU Two Intel E5-2660 v3 10-core CPUs at 2.60 GHz (Haswell EP)

RAM 160 GB ECC Memory (10x 16GB DDR4 2133 MHz dual rank RDIMMs)

Disk 1 One Intel DC S3500 480 GB 6G SATA SSD

Disk 2 Two 1.2 TB 10K RPM 6G SAS SFF HDDs

NIC Dual-port Intel X520 10GB NIC (PCIe v3.0, 8 lanes)

NIC Onboard Intel i350 1GB

186 Astsatryan et al.

3.4 Cost evaluation

In this study, cost predictions were made using the AWS Pricing Calculator to esti-
mate expenses associated with various AWS services. The calculations are based on
the widely adopted Pay-as-you-go (PAYG) model, wherein users are billed monthly for
the specific services they utilize. This approach ensures transparency and accuracy in
forecasting expenses, allowing researchers to plan and manage their budgets effectively.

The total cost model can be represented by equation (1), where:
I – total number of connected services.
N – total number of consumed resources from the service i.
pni – unit price for consumed resource n from the service i.
qni – quantity of units for consumed resource n from the service i.

Ccloud =

I∑
i=1

(
N∑

n=1

pni · qni

)
. (1)

Such a model is beneficial for small or short-term projects. However, the costs can
be excessive for large HPC research projects dealing with large volumes of data, even
if the vendor offers significant discounts and cost optimization tools. Therefore, most
research studies (Smith et al., 2019; Emeras et al., 2016) on this topic concluded that
running scientific workloads on-premises is more cost-effective than running them in
the cloud. The main cost factors of on-premises implementation of HPC are shown in
Table 4.

Table 4. Main Cost Factors

Capital expenditures (CapEx) Operating expenditures (OpEx)

Servers Electricity

Network Staff

Storage Maintenance

Facilities Depreciation

Licenses Recurring licenses

The equation (2) for total spending over M months can be expressed as follows:

Con-premises =

M∑
m=1

(
CCapEx

m
+ COpEx

)
. (2)

The calculations in (Gadban, 2022) show that for M ⩾ 12, using an on-premise so-
lution is more advantageous than using the cloud. Furthermore, this inequality becomes
even more significant in regions with lower operating costs (including space rental,
salaries, and wages).

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 187

4 Performance analysis

This section describes the configuration of benchmarking tools and the experimental
environment for studying the throughput and average response time for the main oper-
ations with the file systems. It presents the results of the experiments carried out.

4.1 Configuration of benchmarking tools and environment

4.1.1 COSBench configuration The COSBench testing procedure uses a workload
configuration file to simulate different usage patterns. A workload is represented as an
XML file specifying important testing parameters. Key components of this configura-
tion include Special Work blocks and Operation blocks:

Special Work blocks:

<workstage name="<name>">

<work

type="init|prepare|cleanup|dispose"

workers="<num>"

config="<key>=<value>;..." />

</workstage>

Operation blocks:

<work name="<name>"

workers="<num>"

runtime="<num>">

<operation type="read|write|delete"

ratio="<1-100>"

config="<key>=<value>;..." />

</work>

Among the parameters that define the configuration, the following should be high-
lighted:

– workers: number of threads to conduct the work in parallel
– runtime: duration of the work
– sizes: object size with unit (B/KB/MB/GB)

Over 120 configuration files were created for the test environment to simulate var-
ious usage patterns, comprehensively analyzing system performance under different
conditions.

COSBench evaluates performance using several crucial metrics: average response
time (Avg-ResTime), operation count (Op-Count), and throughput. Avg-ResTime mea-
sures the average time to complete an operation from request initiation to response. This
metric indicates system latency, with lower values signifying higher responsiveness. It
helps identify and reduce performance bottlenecks. Op-Count is the total number of op-
erations (read, write, delete) executed during testing. Throughput is the amount of data
processed per unit of time, typically measured in bytes per second (B/s). This metric

188 Astsatryan et al.

gauges data transfer efficiency and helps determine optimal configurations for maximiz-
ing data processing speed. Analyzing Avg-ResTime, Op-Count, and Throughput helps
evaluate the system’s performance.

4.1.2 MDTest configuration The first step is to clone the repository and build the
application by executing the following commands:

$ git clone https://github.com/hpc/ior.git

$ cd ior

$./bootstrap

$./configure

$ make

Then to run MDtest, it is performed the following command:

mpirun -n <...> mdtest -n 10000000 -w 3901 -e 3901

The main parameters for MDTest configuration include:

– mpirun -n: initiates MPI processes
– -n 1000000: each process will create 1 000 000 files and directories
– -w 3901: writes 3901 bytes to each file after its creation
– -e 3901: reads 3901 bytes from each file

These configuration settings evaluate the system’s performance under different con-
ditions.

4.1.3 Environment configuration Clusters were deployed using disk images based
on Linux kernel version 4.18.x for the experiments, widely adopted by Rocky Linux 8.x
and CentOS distributions. This approach ensures compatibility with existing software
and hardware configurations. The Ceph setup included an MDS, a MON, and various
OSDs, while the Lustre cluster consisted of an MDS and a number of OSSes. The
JuiceFS cluster was configured, ensuring that the setup mirrored Ceph and Lustre for
evolution (Dai et al., 2019).

The selected configurations are critical for understanding the performance char-
acteristics by considering key performance metrics and behaviors to evaluate various
loads and operational scenarios. The evaluation results highlight the capabilities and
limitations of each storage solution, guiding future improvements and optimizations.

4.2 Results

4.2.1 COSBench The results are shown in Fig. 4. The highest throughput for Lus-
tre+MinIO is 488.1 – 510.32 ops/s. In addition, Lustre+MinIO has the best average
response time performance. Notably, the average response time changes insignificantly
as the workload increases, indicating the high scalability of this solution.

Anomalous results were observed for block sizes of 4KB and 4MB, likely due to
the minimum chunk size requirement of 5MB for S3. A correlation was noted between

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 189

4 KB
4 MB

64 MB
256 MB

1024 MB

Object Sizes

1

100

1000

W
orkers

1K

2K

Response Tim
e (m

s)

JuiceFS CEPH Lustre+MinIO

Fig. 4. Average Response Time for the write operation

the variables under consideration for larger chunk sizes. In the case of Ceph, as block
sizes increase, the average response time tends to rise, indicating longer durations for
write operations. Conversely, throughput increases with larger block sizes and a more
significant number of workers. This suggests enhanced efficiency under conditions of
higher parallelism and more extensive data sizes.

Similarly, JuiceFS exhibits comparable trends, with the average response time in-
creasing as block sizes and the number of workers rise. However, JuiceFS generally
shows a longer average response time than Ceph under similar configurations, high-
lighting potential performance differences between the two storage systems. In the Lus-
tre with MinIO setup, average response time, and throughput vary with block sizes and
worker counts. This configuration demonstrates competitive performance metrics, par-
ticularly notable for their lower average response time and higher throughput in specific
scenarios compared to Ceph and JuiceFS (see Fig. 5).

4.2.2 MDTest During test iteration, each MPI task generates, parses, and deletes a
specified number of directories and files while measuring operation performance per
second (ops/s).

The test configuration was designed following the IO500 benchmark guidelines,
specifically utilizing variations of mdtest-hard.

The main statistical performance metrics for storage operations are presented in
Table 5.

190 Astsatryan et al.

0 100 200 300 400 500
Throughput (op/s)

1900

2000

2100

2200

2300

2400

2500

Re
sp

on
se

 T
im

e
(m

s)

JuiceFS, 4 KB
JuiceFS, 4 MB
JuiceFS, 64 MB
JuiceFS, 256 MB
JuiceFS, 1024 MB
CEPH, 4 KB
CEPH, 4 MB
CEPH, 64 MB
CEPH, 256 MB
CEPH, 1024 MB
Lustre+MinIO, 4 KB
Lustre+MinIO, 4 MB
Lustre+MinIO, 64 MB
Lustre+MinIO, 256 MB
Lustre+MinIO, 1024 MB

Fig. 5. Throughput and average response time.

Dir c
rea

tio
n

Dir s
tat

Dir r
en

am
e

Dir r
em

ov
al

File
 cr

ea
tio

n

File
 st

at

File
 re

ad

File
 re

mov
al

0

100000

200000

300000

400000

500000

600000

M
ea

n
Ti

m
e

(m
s)

Lustre+MinIO
CEPH
JuiceFS

Fig. 6. Mean Performance Comparison of MDTest by Operations

MDTest allows assessment of the maximum, minimum, and average time values for
operations such as creation, statistics, rename, and removal for both files and directories.
For clarity, Fig. 6 shows averaged metrics across all test iterations on each node for each
operation.

As expected, Lustre significantly outperforms its counterparts across all operations.

5 Cost analysis

5.1 Cloud costs

This section develops a cost model to evaluate the costs associated with using Amazon
AWS for data processing and cloud storage. The proposed model considers core AWS
services, which include Amazon FSx for Lustre, Amazon S3, and Elastic Load Bal-
ancing (ELB). These services provide scalable solutions for file storage, object storage,

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 191

Table 5. Performance metrics for storage operations, mean time (ms)

Operation Storage Max Min Mean Median

Directory creation

Lustre 32744.976 14104.531 23109.016 24385.488

Ceph 37694.494 28103.387 30661.326 28103.387

JuiceFS 58899.664 36306.540 44500.488 38396.262

Directory stat

Lustre 294895.873 2815347.026 1471021.501 2815347.026

Ceph 624617.126 5208374.519 2004635.763 5208374.519

JuiceFS 469476.606 4139251.949 1543666.445 4139251.949

Directory rename

Lustre 56912.046 1916.461 29414.924 1916.461

Ceph 93897.423 19557.603 37198.115 19557.603

JuiceFS 75820.315 43232.581 59567.710 43232.581

Directory removal

Lustre 59122.169 6621.153 32821.761 6621.153

Ceph 148323.927 98359.250 83700.888 98359.250

JuiceFS 114115.195 70459.051 91608.189 70459.051

File creation

Lustre 72868.254 1055.402 39469.875 1055.402

Ceph 49197.739 89360.672 40968.084 89360.672

JuiceFS 55114.241 79455.935 66175.250 79455.935

File stat

Lustre 4422505.272 6423818.786 2187457.716 6423818.786

Ceph 662293.384 3094057.244 1222599.920 3094057.244

JuiceFS 478474.104 4103614.128 1591060.817 4103614.128

File read

Lustre 134355.308 9864.991 62187.950 9864.991

Ceph 183445.766 897273.291 290572.401 897273.291

JuiceFS 149146.718 1084472.024 451627.622 1084472.024

File removal

Lustre 125090.710 5420.850 63696.992 5420.850

Ceph 137649.043 177107.122 115788.872 177107.122

JuiceFS 110802.135 137756.189 124121.737 137756.189

and load balancing. AWS follows a PAYG pricing model, allowing users to pay only for
the consumed resources, with no upfront costs. Discounts of up to 50% are available
through reserved or spot instances; however, these options are not considered in this
model due to the general unpredictability of resource requirements in most workflows.

The resources included in the model are evaluated based on key pricing compo-
nents: storage capacity, throughput capacity, backup storage, data transfer, and process-
ing costs. Specific pricing details for each service, excluding compute nodes, which
would also be deployed in the cloud environment, as outlined in Table 6.

192 Astsatryan et al.

Table 6. AWS Services Pricing Overview

AWS Service Pricing Details (USD/GB/month)

FSx for Lustre

HDD Storage 0.088

SSD Storage 0.794

Backup Storage 0.054

Elastic Load Balancing

Application Load Balancer 0.008

Network Load Balancer 0.006

Data Processing 0.008

Amazon S3

Standard Storage (First 50 TB) 0.0245

Standard Storage (Over 50 TB) 0.0235

Glacier Deep Archive 0.00099

Each service contributes specific cost elements based on usage metrics, consolidated
into an overall cost model for a comprehensive assessment.

Amazon FSx for Lustre, a service designed for high-performance workloads, in-
curs costs for HDD and SSD storage, throughput capacity, and backup storage. These
costs are monthly TB for storage and megabytes per second per tebibyte (MBps/TiB)
for throughput. Therefore, the cost of Amazon FSx for Lustre, costs includes storage,
throughput, and backup, expressed as:

CFSx(m) =
(
pHDD ·qHDD+pSSD ·qSSD+pThroughput ·qThroughput+pBackup ·qBackup

)
·m, (3)

where p represents unit pricing, and q represents quantities.
For Amazon S3, costs include inbound storage and data transfer fees, calculated as

follows:

CS3(m) =
(
pS3 · qS3 + pDT · qDT

)
·m. (4)

ELB bases its cost on the volume of data the load balancer processes, typically
measured in GB or TB per month. The cost of ELB is determined by the volume of data
processed, represented as:

CELB(m) = pELB · qELB ·m. (5)

The total cost of operating in the cloud, Ccloud, over m months, is the sum of the ex-
penses from Amazon FSx for Lustre, Amazon S3, and ELB, as defined in Equation (6).

Ccloud(m) = CFSx(m) + CS3(m) + CELB(m). (6)

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 193

5.2 On-premises HPC costs

The cost evaluation of on-premises solutions focuses on the total expenses required for
deploying and operating computing infrastructure locally. These expenses represent the
total cost of ownership, which comprises fixed costs, capital expenditures (CapEx), and
variable costs, which account for operational expenditures (OpEx). The total costs are
expressed as follows:

Con-premises = CCapEx + COpEx (7)

Fixed costs (CapEx) are required to build the infrastructure and do not depend on
its use over time. These include acquiring hardware components, networking equip-
ment, storage systems, and facility preparation costs. Mathematically, fixed costs can
be expressed as:

CCapEx = N · CServers + CNetwork + CStorage + CFacilities (8)

where N is the number of hardware units, CServers, CNetwork, and CStorage are the costs
associated with individual hardware components, network equipment, and storage sys-
tems, respectively, and CFacilities represents the expenses for facility preparation. Facility
costs can be excluded if the existing infrastructure can sufficiently host the equipment
without modifications.

Variable costs (OpEx) reflect the operating costs incurred over the lifecycle of the
system and scale with usage over time. This includes electricity consumption, mainte-
nance, depreciation, software licenses, and personnel costs. Assuming consistent monthly
usage, variable costs are modeled as follows:

COpEx = m · (CElectricity + CStaff + CLicenses + CMaintenance + CDepreciation) (9)

where m denotes the system’s operating time in months. Electricity consumption
contributes significantly to variable costs, which are calculated as follows:

CElectricity(h) =
24 · 365
12 · 1000

· cElectricity · (N · PServers + PNetwork + PCooling) (10)

Here, PServers, PNetwork, and PCooling denote the power consumption of the respective
components in Watts, and cElectricity is the electricity cost per kWh. For systems with
power-saving modes such as idle or hibernate, the calculation can be refined to account
for the proportion of time spent in each mode.

Maintenance costs, which include hardware repairs and replacements, are often
modeled as a percentage of the total initial hardware investment:

CMaintenance = r · (N · CServers + CNetwork + CStorage) (11)

where r represents the annual maintenance rate. Personnel costs depend on the total
working hours required for operation and maintenance, expressed as:

194 Astsatryan et al.

CStaff(h) = h · CStaff/hour (12)

where h is the total monthly working hours and CStaff/hour is the hourly wage. Soft-
ware licensing costs CLicenses account for recurring software expenses required for op-
eration. This cost model provides a detailed breakdown of the financial components of
deploying and maintaining on-premise solutions. It allows adaptation to specific local
conditions such as hardware prices, electricity tariffs, and labor costs and provides a
robust framework for evaluating cost-effectiveness compared to alternative computing
solutions.

5.3 On-premises and cloud costs comparison

Cost models assess computing infrastructure’s financial viability for comparing on-
premises solutions and cloud services. These models perform detailed analyses and
determine economical approaches for specific computational tasks. Budget, standard,
and high-performance on-premise solutions are considered with different complexities
and configurations. Table 7 shows the main parameters for calculating the cost of an
on-premise solution.

As a cloud service provider, AWS was selected with the nearest data center regard-
ing latency, located in Frankfurt, Germany. The cost analysis for the cloud solution was
conducted using formulas (3)–(6) based on data obtained from the AWS calculator6.
The cost estimation for the on-premises solution was performed using formulas (7)–
(12), leveraging publicly available data on equipment specifications, facility expenses,
electricity rates7, and staff salaries8. The comparison was visualized through a month-
by-month analysis following formulas (1), (2) and is shown in Fig. 7.

The evaluation shows that the on-premises solution incurs significantly higher costs
in the initial months due to substantial CapEx. After the first year, the monthly on-
premises solution costs exhibit a noticeable increase. This rise reflects the inclusion of
annual depreciation and maintenance provisions, accounting for the lifecycle and po-
tential replacement of hardware components. While this adjustment increases monthly
costs, the on-premises solution remains more cost-effective than the cloud alternative
beyond the 12-month.

In contrast, the cloud-based solution demonstrates a consistent and predictable cost
structure, reflecting the subscription-based pricing model of providers such as AWS.
This flat monthly cost remains advantageous for short-term projects or applications re-
quiring rapid scalability and minimal initial investment. However, this fixed-cost model
becomes less favorable for long-term high-performance workloads due to its inability
to benefit from economies of scale or decreasing marginal costs.

The results confirm that on-premises solutions offer clear financial advantages for
computationally intensive projects exceeding one year, particularly in regions like Ar-
menia where operational costs—such as electricity, real estate, and labor—are relatively

6 https://calculator.aws
7 https://energyagency.am/page_pdf/sakagner
8 https://www.paylab.com/am/salaryinfo/information-technology/

systems-administrator

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 195

Table 7. Cost Parameters for On-Premises Configurations

Characteristics Budget Standard High

Configuration Details 10 nodes, basic
cooling

50 nodes, air cooling,
150TB storage

150 nodes, CRAH
cooling, 600TB
storage

Node Specifications Intel i7 12700, 16GB
ECC RAM, 480GB
SSD, 1.2TB HDD

Intel Xeon E5-2660
v3, 64GB ECC RAM,
480GB SSD, 1.2TB
HDD

Intel Xeon E5-2660
v3, 160GB ECC
RAM, 2x480GB SSD,
2x1.2TB HDD, Intel
X520 10GbE NIC

Cooling System Basic air cooling Air-cooled chiller CRAH with VFD
chiller/tower

CNode (USD) 800 1,500 2,100

CServers (USD) 8,000 75,000 315,000

CStorage (USD) — 4,500 18,000

CFacilities (USD) — — 140,000

CNetwork (USD) — — 31,500

CMaintenance (%) — — 5

CDepreciation (%) — — 10

CStaff (USD/month) — — 800× 3 = 2, 400

PServers (W) 200 320 495

PCooling (W) 2,400 26,250 110,000

PNetwork (W) — — 2,250

0 5 10 15 20 25
Months

100

200

300

400

500

M
on

th
ly

 P
ay

m
en

t (
K

US
D)

AWS Cloud Solution
On-premises Solution

Fig. 7. On-Premises and Cloud Comparison

196 Astsatryan et al.

low. These results corroborate earlier studies, emphasizing the cost-efficiency of on-
premises infrastructure in similar economic contexts. The lower costs of electricity and
salaries in Armenia further amplify the financial feasibility of this approach and make
it a more attractive option for local organizations or research institutions.

In summary, while cloud-based solutions remain suitable for short-term and highly
variable computational needs, on-premises infrastructure demonstrates superior cost-
effectiveness for long-term, resource-intensive projects. These results provide a tradeoff
for decision-making in selecting computational infrastructure, particularly for institu-
tions in regions with favorable economic conditions for on-premises deployment.

6 Conclusion and future work

As demand for cloud-based HPC continues to increase, existing market solutions of-
ten cannot meet the needs of large research projects due to high costs. As shown,
on-premise solutions are more cost-effective than PAYG models. Despite the topic’s
relevance and extensive research, there are still hardly any viable alternatives. We have
focused on three development strategies for such systems by comprehensively explor-
ing various approaches.

Our research, which examines systems from both a file and object perspective,
shows the convergence of Lustre parallel file systems with MinIO object storage as
a promising solution. Specifically, as a COSBench-evaluated cloud storage solution,
this converged approach performs better than the popular Ceph system, achieving over
20% better average response time and throughput metrics. As an HPC file system, Lus-
tre delivers an average of 30% faster performance across all major operations. This
performance advantage becomes much more noticeable with higher workloads.

The convergence of cloud technologies with HPC systems offers significant bene-
fits such as improved scalability, improved data availability, and simplified workflow
management. Although the initial setup is more complex compared to Ceph or JuiceFS,
the convergence of Lustre with MinIO appears more promising.

Therefore, the convergence of Lustre with MinIO is the most compelling option for
further investigation. Further exploration of this solution will contribute to developing
an open-source HPC system with a fully integrated S3 gateway. The planned experi-
ments will cover a broader range of workloads and compare the results with alternative
object storage solutions, and utilize memory pooling technologies. Additionally, we
will extend our experiments to various infrastructures, including serverless computing
environments, containerized applications, virtual machines, traditional HPC setups, and
clustered systems (Petrosyan and Astsatryan, 2022; Astsatryan et al., 2017, 2004).

Acknowledgements

The research was supported by the Science Committee of the Republic of Armenia by
the project entitled ”Self-organized Swarm of UAVs Smart Cloud Platform Equipped
with Multi-agent Algorithms and Systems” (Nr. 21AG-1B052).

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 197

References

Astsatryan, H., Narsisian, W., Kocharyan, A., Da Costa, G., Hankel, A., Oleksiak, A. (2017).
Energy optimization methodology for e-infrastructure providers, Concurrency and Compu-
tation: Practice and Experience 29(10), e4073.

Astsatryan, H., Shoukourian, Y., Sahakyan, V. (2004). The armcluster project: brief introduc-
tion, Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA’04, pp. 1291–1295.

Chen, H.-B., Grider, G., Montoya, D. R. (2017). An early functional and performance experi-
ment of the marfs hybrid storage ecosystem, 2017 IEEE International Conference on Cloud
Engineering (IC2E), IEEE, pp. 59–66.

Chen, H.-M., Li, C.-J., Ke, B.-S. (2017). Designing a simple storage services (s3) compatible
system based on ceph software-defined storage system, Proceedings of the 2017 2nd Inter-
national Conference on Multimedia Systems and Signal Processing, pp. 6–10.

Cho, K.-J., Kang, I., Kim, J.-S. (2023). Arkfs: A distributed file system on object storage for
archiving data in hpc environment, 2023 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), IEEE, pp. 301–311.

Dai, D., Gatla, O. R., Zheng, M. (2019). A performance study of lustre file system checker:
Bottlenecks and potentials, 2019 35th Symposium on Mass Storage Systems and Technologies
(MSST), IEEE, pp. 7–13.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L., Hibler, M.,
Johnson, D., Webb, K. et al. (2019). The design and operation of {CloudLab}, 2019 USENIX
annual technical conference (USENIX ATC 19), pp. 1–14.

Durner, D., Leis, V., Neumann, T. (2023). Exploiting cloud object storage for high-performance
analytics, Proceedings of the VLDB Endowment 16(11), 2769–2782.

Emeras, J., Besseron, X., Varrette, S., Bouvry, P., Peters, B. (2016). Hpc or the cloud: a cost
study over an xdem simulation, Proc. of the 7th International Supercomputing Conference in
Mexico (ISUM 2016). Puebla, México.

Gadban, F. (2022). Analyzing Convergence Opportunities of HPC and Cloud for Data Intensive
Science, PhD thesis, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.

Gadban, F., Kunkel, J. (2021). Analyzing the performance of the s3 object storage api for hpc
workloads, Applied Sciences 11(18), 8540.

Gadban, F., Kunkel, J., Ludwig, T. (2020). Investigating the overhead of the rest protocol when
using cloud services for hpc storage, High Performance Computing: ISC High Performance
2020 International Workshops, Frankfurt, Germany, June 21–25, 2020, Revised Selected Pa-
pers 35, Springer, pp. 161–176.

Gudu, D., Hardt, M., Streit, A. (2014). Evaluating the performance and scalability of the ceph
distributed storage system, 2014 IEEE International Conference on Big Data (Big Data),
IEEE, pp. 177–182.

Hennecke, M. (2020). Daos: A scale-out high performance storage stack for storage class mem-
ory, Supercomputing frontiers 40.

Huang, W.-C., Lai, C.-C., Lin, C.-A., Liu, C.-M. (2015). File system allocation in cloud
storage services with glusterfs and lustre, 2015 IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity), pp. 1167–1170.

Inman, J. T., Vining, W. F., Ransom, G. W., Grider, G. A. (2017). Marfs, a near-posix interface
to cloud objects, ; Login 42(LA-UR-16-28720; LA-UR-16-28952).

Jeong, K., Duffy, C., Kim, J.-S., Lee, J. (2019). Optimizing the ceph distributed file system for
high performance computing, 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 446–451.

198 Astsatryan et al.

Jones, M., Kepner, J., Arcand, W., Bestor, D., Bergeron, B., Gadepally, V., Houle, M., Hubbell,
M., Michaleas, P., Prout, A. et al. (2017). Performance measurements of supercomputing
and cloud storage solutions, 2017 IEEE High Performance Extreme Computing Conference
(HPEC), IEEE, pp. 1–5.

Lackschewitz, N. M., Krey, S., Nolte, H., Christgau, S., Oeste, S., Kunkel, J. (2022). Performance
evaluation of object storages, NHR2022 .

Li, H., Zhang, S., Guo, Z., Huang, Z., Qian, L. (2020). Test and optimization of large-scale ceph
system, 2020 IEEE 3rd International Conference of Safe Production and Informatization
(IICSPI), IEEE, pp. 237–241.

Lillaney, K., Tarasov, V., Pease, D., Burns, R. (2019). Towards marrying files to objects, arXiv
preprint arXiv:1908.11780 .

Liu, J., Koziol, Q., Butler, G. F., Fortner, N., Chaarawi, M., Tang, H., Byna, S., Lockwood, G. K.,
Cheema, R., Kallback-Rose, K. A., Hazen, D., Prabhat, M. (2018). Evaluation of hpc applica-
tion i/o on object storage systems, 2018 IEEE/ACM 3rd International Workshop on Parallel
Data Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS), pp. 24–34.

Lockwood, G. K., Snyder, S., Wang, T., Byna, S., Carns, P., Wright, N. J. (2018). A year in the
life of a parallel file system, SC18: International conference for high performance computing,
networking, storage and analysis, IEEE, pp. 931–943.

Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E. (2016). Daos and friends: a
proposal for an exascale storage system, SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE, pp. 585–596.

Luettgau, J., Martinez, H., Olaya, P., Scorzelli, G., Tarcea, G., Lofstead, J., Kirkpatrick, C., Pas-
cucci, V., Taufer, M. (2023). Nsdf-services: Integrating networking, storage, and computing
services into a testbed for democratization of data delivery, Proceedings of the IEEE/ACM
16th International Conference on Utility and Cloud Computing, pp. 1–10.

Manubens, N., Smart, S. D., Quintino, T., Jackson, A. (2022). Performance comparison of daos
and lustre for object data storage approaches, 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW), IEEE, pp. 7–12.

Milojicic, D., Faraboschi, P., Dube, N., Roweth, D. (2021). Future of hpc: Diversifying het-
erogeneity, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 276–281.

Palankar, M. R., Iamnitchi, A., Ripeanu, M., Garfinkel, S. (2008). Amazon s3 for science grids: a
viable solution?, Proceedings of the 2008 international workshop on Data-aware distributed
computing, pp. 55–64.

Panda, D. K., Lu, X., Shankar, D. (2022). High-performance big data computing, MIT Press,
London.

Petrosyan, D., Astsatryan, H. (2022). Serverless high-performance computing over cloud, Cy-
bernetics and Information Technologies 22(3), 82–92.

Schwan, P. et al. (2003). Lustre: Building a file system for 1000-node clusters, Proceedings of
the 2003 Linux symposium, Vol. 2003, pp. 380–386.

Smith, H. (2016). Data Center Storage: Cost-Effective Strategies, Implementation, and Manage-
ment, CRC Press, Boca Raton, London, New York.

Smith, P., Harrell, S. L., Younts, A., Zhu, X. (2019). Community clusters or the cloud: Continuing
cost assessment of on-premises and cloud hpc in higher education, Proceedings of the Prac-
tice and Experience in Advanced Research Computing on Rise of the Machines (learning),
Association for Computing Machinery, pp. 1–4.

Spiga, D., Ciangottini, D., Costantini, A., Cutini, S., Duma, C., Gasparetto, J., Lubrano, P.,
Martelli, B., Ronchieri, E., Salomoni, D. et al. (2022). Open-source and cloud-native so-
lutions for managing and analyzing heterogeneous and sensitive clinical data, International
Symposium on Grids and Clouds 2022, ISGC 2022.

Performance-Driven and Cost-Efficient Convergence of Cloud and HPC 199

Van der Ster, D., Wiebalck, A. (2014). Building an organic block storage service at cern with
ceph, Journal of Physics: Conference Series, Vol. 513, IOP Publishing, p. 042047.

Weil, S. A., Brandt, S. A., Miller, E. L., Maltzahn, C. (2006). Crush: Controlled, scalable, de-
centralized placement of replicated data, Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, pp. 122–es.

Weil, S., Brandt, S. A., Miller, E. L., Long, D. D., Maltzahn, C. (2006). Ceph: A scalable, high-
performance distributed file system, Proceedings of the 7th Conference on Operating Systems
Design and Implementation (OSDI’06), pp. 307–320.

Zhang, X., Wang, Y., Wang, Q., Zhao, X. (2019). A new approach to double i/o performance for
ceph distributed file system in cloud computing, 2019 2nd International Conference on Data
Intelligence and Security (ICDIS), IEEE, pp. 68–75.

Zheng, Q., Chen, H., Wang, Y., Duan, J., Huang, Z. (2012). Cosbench: A benchmark tool for
cloud object storage services, 2012 IEEE Fifth International Conference on Cloud Comput-
ing, IEEE, pp. 998–999.

Received December 9, 2024 , revised February 21, 2025, accepted February 21, 2025

